Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease

Abstract

Mutations of mitochondrial DNA (mtDNA) are frequent in humans and are implicated in many different types of pathology. The high substitution rate and the maternal, asexual mode of transmission of mtDNA make it more likely to accumulate deleterious mutations. Here, we discuss recent evidence that mtDNA transmission is subject to strong purifying selection in the mammalian female germ line, limiting the accumulation of such mutations. This process shapes mitochondrial sequence diversity and is therefore probably of fundamental importance for animal evolution and in human mitochondrial disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammalian germline development and the mtDNA bottleneck.
Figure 2: The signature of purifying selection in the female germ line.
Figure 3: Potential levels of mitochondrial DNA (mtDNA) selection in the mammalian female germ line.

Similar content being viewed by others

References

  1. Rand, D. M. Mitigating mutational meltdown in mammalian mitochondria. PLoS Biol. 6, e35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clayton, D. A. Replication of animal mitochondrial DNA. Cell 28, 693–705 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Jenuth, J. P., Peterson, A. C. & Shoubridge, E. A. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nature Genet. 16, 93–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Nishimura, Y. et al. Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers. Proc. Natl Acad. Sci. USA 103, 1382–1387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaneda, H. et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc. Natl Acad. Sci. USA 92, 4542–4546 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Howell, N. et al. The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am. J. Hum. Genet. 72, 659–670 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elson, J. L., Turnbull, D. M. & Howell, N. Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am. J. Hum. Genet. 74, 229–238 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kivisild, T. et al. The role of selection in the evolution of human mitochondrial genomes. Genetics 172, 373–387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bazin, E., Glemin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Meiklejohn, C. D., Montooth, K. L. & Rand, D. M. Positive and negative selection on the mitochondrial genome. Trends Genet. (2007).

  11. Elson, J. L. & Lightowlers, R. N. Mitochondrial DNA clonality in the dock: can surveillance swing the case? Trends Genet. 22, 603–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Pakendorf, B. & Stoneking, M. Mitochondrial DNA and human evolution. Annu. Rev. Genomics Hum. Genet. 6, 165–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Sato, A. et al. Rare creation of recombinant mtDNA haplotypes in mammalian tissues. Proc. Natl Acad. Sci. USA 102, 6057–6062 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ujvari, B., Dowton, M. & Madsen, T. Mitochondrial DNA recombination in a free-ranging Australian lizard. Biol. Lett. 3, 189–192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hauswirth, W. W. & Laipis, P. J. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc. Natl Acad. Sci. USA 79, 4686–4690 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larsson, N. G. et al. Segregation and manifestations of the mtDNA tRNA(Lys) A-->G (8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 51, 1201–1212 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jenuth, J. P., Peterson, A. C., Fu, K. & Shoubridge, E. A. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nature Genet. 14, 146–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Chinnery, P. F. et al. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet. 16, 500–505 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, D. T., Samuels, D. C., Michael, E. M., Turnbull, D. M. & Chinnery, P. F. Random genetic drift determines the level of mutant mtDNA in human primary oocytes. Am. J. Hum. Genet. 68, 533–536 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Jacobs, L. et al. mtDNA point mutations are present at various levels of heteroplasmy in human oocytes. Mol. Hum. Reprod. 13, 9–14 (2007).

    Article  Google Scholar 

  21. Piko, L. & Taylor, K. D. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123, 364–374 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Ebert, K. M., Liem, H. & Hecht, N. B. Mitochondrial DNA in the mouse preimplantation embryo. J. Reprod. Fertil. 82, 145–149 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Thundathil, J., Filion, F. & Smith, L. C. Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71, 405–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Payer, B. et al. Generation of stella–GFP transgenic mice: a novel tool to study germ cell development. Genesis 44, 75–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Shoubridge, E. A. & Wai, T. Mitochondrial DNA and the mammalian oocyte. Curr. Top. Dev. Biol. 77, 87–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Pepling, M. E. & Spradling, A. C. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev. Biol. 234, 339–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Pepling, M. E., Wilhelm, J. E., O'Hara, A. L., Gephardt, G. W. & Spradling, A. C. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc. Natl Acad. Sci. USA 104, 187–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Cao, L. et al. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nature Genet. 39, 386–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Cree, L. M. et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nature Genet. 40, 249–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Stewart, J. B. et al. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol. 6, e10 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319, 958–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kasahara, A. et al. Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells. Hum. Mol. Genet. 15, 871–881 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bergstrom, C. T. & Pritchard, J. Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes. Genetics 149, 2135–2146 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Roze, D., Rousset, F. & Michalakis, Y. Germline bottlenecks, biparental inheritance and selection on mitochondrial variants: a two-level selection model. Genetics 170, 1385–1399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rand, D. M. The units of selection on mitochondrial DNA. Annu. Rev. Ecol. Syst. 32, 415–448 (2001).

    Article  Google Scholar 

  37. Elson, J. L., Samuels, D. C., Turnbull, D. M. & Chinnery, P. F. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet. 68, 802–806 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boehmer, P. E. & Lehman, I. R. Herpes simplex virus DNA replication. Annu. Rev. Biochem. 66, 347–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shoubridge, E. A. & Wai, T. MEDICINE: sidestepping mutational meltdown. Science 319, 914–915 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the support of the Swedish Research Council, Torsten and Ragnar Söderbergs Stiftelse, the Swedish Heart and Lung Foundation, the Knut and Alice Wallenberg Foundation and EUMITOCOMBAT. J.B.S was supported by a postdoctoral fellowship from the Wenner-Gren Stiftelserna. J.L.E is supported by a Research Council UK RCUK Academic fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils-Göran Larsson.

Related links

Related links

FURTHER INFORMATION

The Edinburgh Mouse Atlas Project (emap)

The Human Mitochondrial Genome Database (mtDB)

MITOMAP: a database of human mtDNA variation and disease

Glossary

Muller's ratchet

The irreversible accumulation of deleterious mutations in asexual populations of finite size. The average load of mutations increases over generations because the class of individuals that carry the smallest number of mutant alleles is occasionally lost by genetic drift. In the absence of recombination, this class can never be re-created. The process is named after H. J. Muller, who described it in 1964.

Purifying selection

The form of natural selection by which alleles with reduced fitness or viability are lost in a population.

Genetic bottleneck for mtDNA transmission

A sampling-effect phenomenon, whereby a small number of mtDNA molecules are the progenitors of all of the copies present in the mature animal. If the bottleneck is sufficiently small, this could result in rapid segregation of new variants by stochastic sampling.

Homoplasmy

The existence of only one mtDNA allele in a cell.

Heteroplasmy

The existence of two or more alleles of mtDNA in a mixed proportion within the cell.

Mitotic segregation

A process by which mitochondrial mutation loads can be randomly skewed owing to the unequal portioning of more mutant mitochondria into one of the daughter cells of a cell division.

McDonald–Kreitman test

A comparison of between-species divergence and within-species polymorphism at replacement and synonymous sites to infer adaptive protein evolution.

Synonymous mutation

A mutation that does not alter the gene product, such as silent changes at third codon positions of protein-coding genes.

Non-synonymous mutation

A mutation that alters the gene product, typically an amino-acid substitution.

Primordial germ cell

(PGC). An undifferentiated diploid cell identifiable in the early embryo. PGCs are the cells from which the mature germ cells develop.

Oogonia

Diploid, differentiated germ cells that give rise to the oocytes.

Balbiani Body

A congregation in the cytoplasm of female germ cells consisting of mitochondria, endoplasmic reticulum and granulofibrillar material. These bodies have been reported in many divergent animal species.

Relaxed replication

Non-stringent control of mtDNA replication during the cell cycle, which might lead to different molecules within the same cell replicating at different rates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, J., Freyer, C., Elson, J. et al. Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet 9, 657–662 (2008). https://doi.org/10.1038/nrg2396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing