Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation

Key Points

  • The regulation of stem cell self-renewal is of great biological and medical interest. In particular, adult tissue stem cells must balance stem cell self-renewal and differentiation in order to maintain tissue function and prevent cancer throughout the life of the organism.

  • The cell cycle of embryonic stem (ES) cells is characterized by a reduced (human and primate ES cells) or absent (mouse ES cells) early G1 phase. This may function to reduce or eliminate the dependence of ES cells on mitogen activated protein kinase (MAPK) signalling in order to traverse G1.

  • Many adult stem cells, particularly haematopoietic stem cells, are maintained in the 'resting', or non-cycling, quiescent state. Stem cell quiescence seems to be important for the maintenance of adult stem cell function because most proliferative stimuli, including genetic alterations, induce haematopoietic stem cell exhaustion.

  • Early G1 phase of the cell cycle is an important window during which cells are particularly sensitive to extracellular signals. The few genetic alterations that induce proliferation without causing haematopoietic stem cell exhaustion might do so by avoiding, or facilitating the transition through, early G1.

  • We postulate that embryonic and adult stem cells accomplish self-renewal by reducing or eliminating their dependence on MAPK signalling for the transition through early G1 phase of the cell cycle.

  • The adult stem cell niche might help stem cells self-renew by reducing their exposure to and dependence on MAPK signalling. By inducing stem cell quiescence, the niche pulls the stem cell out of the cell cycle and eliminates the exposure to MAPK signalling in early G1. Secondly, through the presence of signals that can shorten early G1, such as certain morphogens like Wnt, Notch and Hedgehog, the niche reduces the need for MAPK-dependent signalling pathways.

  • Polycomb-mediated silencing of developmental genes seems to be an important mechanism by which self-renewal is maintained by actively suppressing developmental commitment and differentiation. We postulate that typical MAPK-dependent mitogenic stimuli de-repress these genes, thereby promoting developmental commitment.

Abstract

The regulation of stem cell self-renewal must balance the regenerative needs of tissues that persist throughout life with the potential for cell overgrowth, transformation and cancer. Here, we attempt to deconstruct the relationship that exists between cell-cycle progression and the self-renewal versus commitment cell-fate decision in embryonic and adult stem cells. Recent genetic studies in mice have provided insights into the regulation of the cell cycle in stem cells, including its potential modulation by the stem cell niche. Although the dynamics of the embryonic and adult stem cell cycles are profoundly dissimilar, we suggest that shared principles underlie the governance of this important decision point in diverse stem cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cell cycle in embryonic stem cells.
Figure 2: Loss of quiescence results in loss of function in adult stem cells.
Figure 3: A possible mechanism linking early G1 transit with commitment or self-renewal.
Figure 4: A model of niche regulation of stem cell proliferation and cell-fate decisions.
Figure 5: Polycomb-mediated silencing of developmental genes imposes self-renewal by actively blocking stem cell differentiation.

Similar content being viewed by others

References

  1. Mimeault, M. & Batra, S. K. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24, 2319–2345 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Mimeault, M., Hauke, R. & Batra, S. K. Stem cells: a revolution in therapeutics — recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin. Pharmacol. Ther. 82, 252–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006). This paper and references 65 and 66 demonstrate a general role for the p16 gene in the onset of ageing-dependent functional deficits in three different adult stem cell and/or progenitor cell models. It also highlights the fact that cancer prevention and ageing are two sides of the same coin.

    Article  CAS  PubMed  Google Scholar 

  5. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Akala, O. O. & Clarke, M. F. Hematopoietic stem cell self-renewal. Curr. Opin. Genet. Dev. 16, 496–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Savatier, P., Huang, S., Szekely, L., Wiman, K. G. & Samarut, J. Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9, 809–818 (1994). This paper, together with reference 12, demonstrates that the G1 phase of the mES cell cycle is abbreviated and the activity of cyclin E–CDK2 is continuous throughout the cell cycle. ES cell differentiation brings cyclin E–CDK2 activity under the control of the cell cycle and Rb.

    CAS  PubMed  Google Scholar 

  8. Burdon, T., Smith, A. & Savatier, P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 12, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Fluckiger, A. C. et al. Cell cycle features of primate embryonic stem cells. Stem Cells 24, 547–556 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Becker, K. A. et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J. Cell. Physiol. 209, 883–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Stead, E. et al. Pluripotent cell division cycles are driven by ectopic CDK2, cyclin A/E and E2F activities. Oncogene 21, 8320–8333 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. White, J. et al. Developmental activation of the RB-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol. Biol. Cell 16, 2018–2027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jirmanova, L., Afanassieff, M., Gobert-Gosse, S., Markossian, S. & Savatier, P. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21, 5515–5528 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Meloche, S. & Pouyssegur, J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26, 3227–3239 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Vaudry, D., Stork, P. J., Lazarovici, P. & Eiden, L. E. Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 1648–1649 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43 (1999). This paper demonstrates that MAPK signalling in mES cells induces differentiation and that self-renewal of mES cells is enhanced by the addition of a MAPK inhibitor to the culture medium.

    Article  CAS  PubMed  Google Scholar 

  18. Meloche, S., Vella, F. D., Voisin, L., Ang, S. L. & Saba- El-Leil, M. ERK2 signaling and early embryo stem cell self-renewal. Cell Cycle 3, 241–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sherr, C. J. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60, 3689–3695 (2000).

    CAS  PubMed  Google Scholar 

  21. Massague, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA 96, 3120–3125 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahmud, N. et al. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 97, 3061–3068 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Siminovitch, L., Till, J. E. & Mcculloch, E. A. Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cell. Physiol. 64, 23–31 (1964). Although it does not directly study stem cells, this is the first paper to demonstrate that primitive hematopoietic cells are depleted following serial transplantation.

    Article  CAS  Google Scholar 

  25. Bell, D. R. & Van Zant, G. Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene 23, 7290–7296 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Kamminga, L. M. et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107, 2170–2179 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harrison, D. E., Astle, C. M. & Delaittre, J. A. Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. J. Exp. Med. 147, 1526–1531 (1978).

    Article  CAS  PubMed  Google Scholar 

  28. Ross, E. A., Anderson, N. & Micklem, H. S. Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging. J. Exp. Med. 155, 432–444 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrison, D. E., Stone, M. & Astle, C. M. Effects of transplantation on the primitive immunohematopoietic stem cell. J. Exp. Med. 172, 431–437 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Phillips, R. L., Reinhart, A. J. & Van Zant, G. Genetic control of murine hematopoietic stem cell pool sizes and cycling kinetics. Proc. Natl Acad. Sci. USA 89, 11607–11611 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Haan, G., Nijhof, W. & Van Zant, G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89, 1543–1550 (1997).

    CAS  PubMed  Google Scholar 

  32. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, M. H. & Yang, H. Y. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol. Life Sci. 58, 1907–1922 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000). This paper is the first demonstration of a particular gene regulating the maintenance of stem cell quiescence and the long-term maintenance of stem cell function. Studies of several other quiescence regulators have since confirmed the importance of quiescence for adult stem cell function.

    Article  CAS  PubMed  Google Scholar 

  35. Kippin, T. E., Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756–767 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Os, R. et al. A limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells 25, 836–843 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431, 1002–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer. 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  39. Yilmaz, O. H. et al. PTEN dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. He, X. C. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nature Genet. 39, 189–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Tothova, Z. et al. FOXOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Miyamoto, K. et al. FOXO3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell, 1, 101–112 (2007).

    Article  CAS  Google Scholar 

  44. Nakamura, N. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell. Biol. 20, 8969–8982 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lacorazza, H. D. et al. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 9, 175–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, Y., Shen, H., Franklin, D. S., Scadden, D. T. & Cheng, T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nature Cell Biol. 6, 436–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, H., Yuan, Y., Shen, H. & Cheng, T. Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood 107, 1200–1206 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sauvageau, G. et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl Acad. Sci. USA 91, 12223–12227 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thorsteinsdottir, U., Sauvageau, G. & Humphries, R. K. Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood 94, 2605–2612 (1999).

    CAS  PubMed  Google Scholar 

  50. Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp. Hematol. 29, 1125–1134 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45 (2002). This paper demonstrates the dramatic in vitro expansion of HSCs by the expression of a single gene. The expanded HSCs appear to function normally upon transplantation. The mechanism(s) responsible are not fully understood.

    Article  CAS  PubMed  Google Scholar 

  52. Brun, A. C. et al. Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 103, 4126–4133 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Bjornsson, J. M. et al. Reduced proliferative capacity of hematopoietic stem cells deficient in HOXB3 and HOXB4. Mol. Cell. Biol. 23, 3872–3883 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Helgason, C. D., Sauvageau, G., Lawrence, H. J., Largman, C. & Humphries, R. K. Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood 87, 2740–2749 (1996).

    CAS  PubMed  Google Scholar 

  55. Kyba, M., Perlingeiro, R. C. & Daley, G. Q. HOXB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Bowles, K. M., Vallier, L., Smith, J. R., Alexander, M. R. & Pedersen, R. A. HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells 24, 1359–1369 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Schmittwolf, C., Porsch, M., Greiner, A., Avots, A. & Muller, A. M. HOXB4 confers a constant rate of in vitro proliferation to transduced bone marrow cells. Oncogene 24, 561–572 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Del Bene, F. & Wittbrodt, J. Cell cycle control by homeobox genes in development and disease. Semin. Cell Dev. Biol. 16, 449–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Krosl, J. & Sauvageau, G. AP-1 complex is effector of Hox-induced cellular proliferation and transformation. Oncogene 19, 5134–5141 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Satoh, Y. et al. Roles for c-Myc in self-renewal of hematopoietic stem cells. J. Biol. Chem. 279, 24986–24993 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr, The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell. Sci. 116, 4947–4955 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Gil, J. & Peters, G. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all. Nature Rev. Mol. Cell Biol. 7, 667–677 (2006).

    Article  CAS  Google Scholar 

  64. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Med. 12, 446–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Adams, G. B. & Scadden, D. T. The hematopoietic stem cell in its place. Nature Immunol. 7, 333–337 (2006).

    Article  CAS  Google Scholar 

  68. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Arai, F. & Suda, T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann. N.Y. Acad. Sci. 1106, 41–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201, 1781–1791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie, T. & Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330 (2000). References 72 and 73 identify the specific cellular components of a stem cell niche and demonstrate that the TGF-β family member Dpp is an important mediator of niche function.

    Article  CAS  PubMed  Google Scholar 

  74. Kiger, A. A., White-Cooper, H. & Fuller, M. T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407, 750–754 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, L. et al. Rho GTPase CDC42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc. Natl Acad. Sci. USA 104, 5091–5096 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arai, F. et al. TIE2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004). This paper identifies a specific niche-derived signal that induces HSC quiescence and cobblestoning, a classical in vitro hallmark of HSCs. It also demonstrates that TIE2–ANG1signalling induces HSC quiescence, maintains HSC function in vitro and protects HSCs from myelosuppressive stress.

    Article  CAS  PubMed  Google Scholar 

  79. Murphy, L. O., MacKeigan, J. P. & Blenis, J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol. Cell. Biol. 24, 144–153 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Pinto, D. & Clevers, H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp. Cell Res. 306, 357–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Chiba, S. Notch signaling in stem cell systems. Stem Cells 24, 2437–2447 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Lai, K., Kaspar, B. K., Gage, F. H. & Schaffer, D. V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci. 6, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Palma, V. et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132, 335–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Carlesso, N., Aster, J. C., Sklar, J. & Scadden, D. T. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 93, 838–848 (1999).

    CAS  PubMed  Google Scholar 

  90. Kenney, A. M. & Rowitch, D. H. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell. Biol. 20, 9055–9067 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Locker, M. et al. Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev. 20, 3036–3048 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, S. et al. Hedgehog signaling and BMI-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063–6071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Spivakov, M. & Fisher, A. G. Epigenetic signatures of stem-cell identity. Nature Rev. Genet. 8, 263–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006). References 97–100 are genome-wide studies that have had a profound impact on our understanding of the transcriptional and epigenetic mechanisms that regulate stem cell pluripotency and self-renewal. In essence, they demonstrate that ES cell self-renewal is dependent on Polycomb-mediated silencing of pro-differentiation developmental regulatory genes.

    Article  CAS  PubMed  Google Scholar 

  101. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Chen, D. & McKearin, D. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr. Biol. 13, 1786–1791 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476 (1997).

    CAS  PubMed  Google Scholar 

  107. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Croce, C. M. & Calin, G. A. miRNAs, cancer, and stem cell division. Cell 122, 6–7 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, H. et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317, 803–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood (2007).

  112. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA 98, 14541–14546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Bertoncello, I., Hodgson, G. S. & Bradley, T. R. Multiparameter analysis of transplantable hemopoietic stem cells: I. The separation and enrichment of stem cells homing to marrow and spleen on the basis of rhodamine-123 fluorescence. Exp. Hematol. 13, 999–1006 (1985).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Scadden.

Related links

Related links

FURTHER INFORMATION

David Scadden's homepage

NIH Resource for Stem Cell research

Nature Insight — Stem Cells

Glossary

Embryonic stem cell

ES cell. Cell lines that are derived from early-stage embryos (blastocysts). These cells can differentiate into all somatic lineages (pluripotent) and are capable of self-renewal when grown under the proper culture conditions.

Quiescence

For a cell, quiescence is the property of not being in the cell cycle. Most adult stem cell populations are maintained in this resting state.

Niche

A specific anatomic location composed of cellular and extracellular constituents that regulates how stem cells participate in tissue generation, maintenance and repair. It is a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms.

Morphogens

A small set of secreted, developmental-regulatory signalling molecules that have the unique property of graded activity. That is to say, these molecules tend to form concentration gradients and can have different biological effects at different concentrations.

Neurosphere

A cluster of neurogenic cells that is generated from a single neural stem cell or progenitor cell when they are cultured in a semi-solid medium that contains appropriate neurotrophic growth factors.

Intestinal polyposis

A condition that is characterized by the presence of a multitude of benign polyps within the intestine; although most polyps are benign, these intestinal polyps have the potential to become malignant.

Senescence

The irreversible exit from the cell cycle. This is often caused by passaging through many rounds of cellular proliferation (replicative senescence) or certain forms of cellular stress and is often linked to ageing.

Endosteal niche

A location in the bone marrow where HSCs localize adjacent to osteoblasts. Osteoblasts regulate HSC function through secreted signalling molecules and direct cell–cell contact.

Bone marrow stromal cells

Non-haematopoietic cellular components of the bone marrow that regulate haematopoiesis and constitute part of the HSC niche.

Polycomb group (PcG) proteins

A family of developmentally important proteins that silence gene expression though a chromatin-mediated mechanism. The Polycomb group proteins can function as an epigenetic mechanism that remembers and imposes the transcriptionally silenced state.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orford, K., Scadden, D. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9, 115–128 (2008). https://doi.org/10.1038/nrg2269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing