Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Epigenome dynamics: a quantitative genetics perspective

Abstract

Classically, quantitative geneticists have envisioned DNA sequence variants as the only source of heritable phenotypes. This view should be revised in light of accumulating evidence for widespread epigenetic variation in natural and experimental populations. Here we argue that it is timely to consider novel experimental strategies and analysis models to capture the potentially dynamic interplay between chromatin and DNA sequence factors in complex traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA sequence and chromatin variation in a segregating population.
Figure 2: Two extreme views of the heritable basis of phenotypic variation.
Figure 3: Classification of epialleles.
Figure 4: Phenotypic variation: a complex case.

Similar content being viewed by others

References

  1. Vaughn, M. W. et al. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5, e174 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang, X., Shiu, S., Cal, A. & Borevitz, J. O. Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet. 4, e1000032 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Riddle, N. C. & Richards, E. J. The control of natural variation in cytosine methylation in Arabidopsis. Genetics 162, 355–363 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Riddle, N. C. & Richards, E. J. Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis. Plant J. 41, 524–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kakutani, T., Munakata, K., Richards, E. J. & Hirochika, H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics 151, 831–838 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Peaston, A. E. & Whitelaw, E. Epigenetics and phenotypic variation in mammals. Mamm. Genome 17, 365–374 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet. 7, 395–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Henderson, I. R. & Jacobsen, S. E. Epigenetic inheritance in plants. Nature 447, 418–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Rev. Genet. 6, 351–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293, 1070–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Stam, M., Belele, C., Dorweiler, J. E. & Chandler, V. L. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev. 16, 1906–1918 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soppe, W. J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6, 791–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Das, O. P. & Messing, J. Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics 136, 1121–1141 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I. & Whitelaw, E. Metastable epialleles in mammals. Trends Genet. 18, 348–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Penterman, J. et al. DNA demethylation in the Arabidopsis genome. Proc. Natl Acad. Sci. USA 104, 6752–6757 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mathieu, O., Reinders, J., Caikovski, M., Smathajitt, C. & Paszkowski, J. Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130, 851–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Richards, E. J. Population epigenetics. Curr. Opin. Genet. Dev. 18, 221–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Zilberman, D. & Henikoff, S. Genome-wide analysis of DNA methylation patterns. Development 134, 3959–3965 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Schones, D. E. & Zhao, K. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet. 9, 179–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, X. et al. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol. 5, e129 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Zilberman, D. The human promoter methylome. Nature Genet. 39, 442–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 39, 61–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2, 395–397 (2008).

    Google Scholar 

  28. Jansen, R. C. Studying complex biological systems using multifactorial perturbation. Nature Rev. Genet. 4, 145–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Mager, J. & Bartolomei, M. S. Strategies for dissecting epigenetic mechanisms in the mouse. Nature Genet. 37, 1194–1200 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Petronis, A. Epigenetics and twins: three variations on the theme. Trends Genet. 22, 347–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Rockman M. V. & Kruglyak L. Genetics of global gene expression. Nature Rev. Genet. 7, 862–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Rosa G. J. M, et al. Review of microarray experimental design strategies for genetical genomics studies. Physiol. Genomics 28, 15–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Li Y. et al. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet. 2, e222 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li Y. et al. Generalizing genetical genomics: getting added value from environmental perturbation. Trends Genet. 24, 518–524 (2008).

    Google Scholar 

  35. Smith E. N. & Kruglyak L. Gene–environment interaction in yeast gene expression. PLoS Biol. 6, e83 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bossdorf, O., Richards, C. L. & Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 11, 106–115 (2008).

    PubMed  Google Scholar 

  37. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meissner et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farthing et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4, e1000116 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mikkelsen et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bjornsson, H. T., Fallin, M. D. & Feinberg, A. P. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20, 350–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Johannes, F. Mapping temporally varying quantitative trait loci in time-to-failure experiments. Genetics 175, 855–865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, R. & Lin, M. Functional mapping — how to map and study the genetic architecture of dynamic complex traits. Nature Rev. Genet. 7, 229–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Henckaerts, E., et al. Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and their response to early acting cytokines. Blood 99, 3947–3954 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Cheverud, J. M., et al. Quantitative trait loci for murine growth. Genetics 142, 1305–1319 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wolf J. B., et al. Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genet. 4, e1000091 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet. 33, 70–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Csaba, P. Plasticity, memory and the adaptive landscape of the genotype. Proc. R. Soc. Lond. B 265, 1319–1323 (1998).

    Article  Google Scholar 

  49. Pal, C. & Miklos, I. Epigenetic inheritance, genetic assimilation and speciation. J. Theor. Biol. 200, 19–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Rando, O. J. & Verstrepen, K. J. Timescales of genetic and epigenetic inheritance. Cell 128, 655–668 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Breitling for critical comments on previous versions of the manuscript, and Y. Li for her help in preparing the figures. The F.J. and R.C.J. group is supported by the Netherlands Organization for Scientific Research (NWO-ALW VICI grant). V.C. is a NET member of the European Union Epigenome Network of Excellence and is supported by the National Centre for Scientific Research (CNRS), Génoplante and the French Agence Nationale de la Recherche (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Johannes.

Related links

Related links

FURTHER INFORMATION

Arabidopsis Epigenetics and Epigenomics, CNRS

Epigenome Network of Excellence

Groningen Bioinformatics Centre

Glossary

Chromatin

The nucleoprotein structure that packages DNA within the nucleus of eukaryotic cells. The basic unit of chromatin is the nucleosome: a protein core made up of two molecules each of histones H2A, H2B, H3 and H4, around which 146 bp of DNA is wrapped. Different chromatin states are defined by a range of post-translational modifications of core histones, by incorporation of various histone isoforms as well as by DNA methylation.

Complex traits

Continuously distributed phenotypes that are classically believed to result from the independent action of many genes, environmental factors and gene-by-environment interactions.

Epialleles

Alternative chromatin states at a given locus, defined with respect to individuals in the population for a given time point and tissue type. Epialleles vary greatly in their stability and they affect gene expression levels or patterns rather than gene products.

Epigenetic

Refers to the mitotic or meiotic transmissibility of chromatin variation, independent of DNA sequence variation.

Epigenome

The chromatin states that are found along the genome, defined for a given time point and cell type. Thus, for a given genome there may be hundreds or thousands of epigenomes, depending on the stability of chromatin states.

Epigenotype

The epiallelic constitution of a locus.

epiQTLdna

Refers to a QTL influencing chromatin states (epi) in either cis or trans, which can be demonstrated to be due to DNA sequence (dna).

Genetical genomics

The process of relating DNA sequence variation to molecular profile and phenotypic variation.

Heritability

A concept used in quantitative genetics to denote the proportion of total phenotypic variation in a population that is attributable to variation in the heritable material shared between related individuals.

Nucleolus organizer region

(NOR). A chromosomal region characterized by tandem repeats of ribosomal DNA around which the nucleolus forms.

phQTLdna

Refers to a QTL influencing a phenotype (ph), which can be demonstrated to be due to DNA sequence (dna).

phQTLepi

Refers to a QTL influencing a phenotype (ph), which can be demonstrated to be due to chromatin (epi).

Tiling array

A subtype of microarray containing small probes that are designed to cover the entire genome or contigs of the genome in an unbiased manner. These arrays can be used coupled with chromatin immunoprecipitation (ChIP–chip), with methyl-DNA immunoprecipitation (MeDIP–chip) and in DNase chip studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannes, F., Colot, V. & Jansen, R. Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9, 883–890 (2008). https://doi.org/10.1038/nrg2467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing