Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Replication in context: dynamic regulation of DNA replication patterns in metazoans

Key Points

  • In metazoa, the entire genome can replicate once each cell cycle without requiring that replication initiate from particular sequences, suggesting that the role of discrete replication initiation programmes is to coordinate replication with gene expression and chromosome condensation.

  • Specific sequences (replicators) determine the ability to initiate DNA replication in cis.

  • The likelihood of initiation from a particular replicator at a specific time during the cell cycle can be modulated by distal sequences and epigenetic modifications.

  • The location of initiation events is affected by distal sequences that often also affect transcription.

  • The location and timing of initiation events often vary with transcription but it is unclear whether the movement of the transcriptional machinery can, by itself, determine initiation sites.

  • Enzymes that modify chromatin, and proteins that recruit such enzymes to particular genomic loci, can affect the location and the timing of initiation events.

  • In certain organisms, the initiation of DNA replication is not limited to specific regions during early embryogenesis; such regions are specified later in development concurrent with chromatin remodelling.

  • Differentiation of specific cell lineages often alters the location and timing of replication initiation in certain loci, concomitant with changes in gene expression.

  • Flexibility in the location and timing of initiation events might help maintain an appropriate number of replication forks during S phase to help preserve genomic stability.

Abstract

Replication in eukaryotes initiates from discrete genomic regions according to a strict, often tissue-specific temporal programme. However, the locations of initiation events within initiation regions vary, show sequence disparity and are affected by interactions with distal elements. Increasing evidence suggests that specification of replication sites and the timing of replication are dynamic processes that are regulated by tissue-specific and developmental cues, and are responsive to epigenetic modifications. Dynamic specification of replication patterns might serve to prevent or resolve possible spatial and/or temporal conflicts between replication, transcription and chromatin assembly, and facilitate subtle or extensive changes of gene expression during differentiation and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of pre-replication and pre-initiation protein complexes.
Figure 2: Confined and extended replication initiation regions.
Figure 3: Distal elements affecting where and when replication initiates.
Figure 4: Variations of replication patterns during differentiation and in response to metabolic changes.

Similar content being viewed by others

References

  1. Jacob, F., Brenner, J. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28, 329 (1963). This paper proposed the replicon model as a mechanism for coordinating DNA replication and cell growth. The replicon paradigm, with some modifications, is the foundation of our current thinking on the regulation of DNA replication.

    Article  CAS  Google Scholar 

  2. DePamphilis, M. L. Origins of DNA replication that function in eukaryotic cells. Curr. Opin. Cell Biol. 5, 434–441 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert, D. M., Miyazawa, H. & DePamphilis, M. L. Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol. Cell. Biol. 15, 2942–2954 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, J. R. & Gilbert, D. M. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science 271, 1270–1272 (1996). References 3 and 4 showed that replication initiation sites are determined anew each cell cycle at a specific time during the G1 phase of the cell cycle.

    Article  CAS  PubMed  Google Scholar 

  5. Donaldson, A. D. Shaping time: chromatin structure and the DNA replication programme. Trends Genet. 21, 444–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Chakalova, L., Debrand, E., Mitchell, J. A., Osborne, C. S. & Fraser, P. Replication and transcription: shaping the landscape of the genome. Nature Rev. Genet. 6, 669–677 (2005).

    Article  CAS  Google Scholar 

  7. Kelly, T. J. & Stillman, B. in DNA Replication and Human Disease (ed. DePamphilis, M. L.) 1–30 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  8. Aladjem, M. I. & Fanning, E. The replicon revisited: an old model learns new tricks in metazoan chromosomes. EMBO Rep. 5, 686–691 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Machida, Y. J., Hamlin, J. L. & Dutta, A. Right place, right time, and only once: replication initiation in metazoans. Cell 123, 13–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. DePamphilis, M. L. et al. Regulating the licensing of DNA replication origins in metazoa. Curr. Opin. Cell Biol. 18, 231–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Sivaprasad, U., Dutta, A. & Bell, S. P. in DNA Replication and Human Disease (ed. DePamphilis, M. L.) 63–88 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  12. Woodward, A. M. et al. Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673–683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vaziri, C. et al. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell 11, 997–1008 (2003). This work showed that relaxation of the mechanisms that regulate the licensing stage and monitor the formation of PreRCs leads to replication of some loci more than once each cell cycle. Such replication activates a cell-cycle checkpoint.

    Article  CAS  PubMed  Google Scholar 

  14. Vashee, S. et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894–1908 (2003). Mammalian ORC does not exhibit sequence specificity, but it is essential for activation of DNA replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacAlpine, D. M., Rodriguez, H. K. & Bell, S. P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094–3105 (2004). The first demonstration that replication timing and transcription activity are coordinated in a metazoan ( D. melanogaster).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Remus, D., Beall, E. L. & Botchan, M. R. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC–DNA binding. EMBO J. 23, 897–907 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abdurashidova, G. et al. Localization of proteins bound to a replication origin of human DNA along the cell cycle. EMBO J. 22, 4294–4303 (2003). The first demonstration that members of the PreRC specifically bind a mammalian replication origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, G., Malott, M. & Leffak, M. Multiple functional elements comprise a mammalian chromosomal replicator. Mol. Cell. Biol. 23, 1832–1842 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ladenburger, E. M., Keller, C. & Knippers, R. Identification of a binding region for human origin recognition complex proteins 1 and 2 that coincides with an origin of DNA replication. Mol. Cell Biol. 22, 1036–1048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gray, S. J., Gerhardt, J., Doerfler, W., Small, L. E. & Fanning, E. An origin of DNA replication in the promoter region of the human fragile X mental retardation (FMR1) gene. Mol. Cell. Biol. 27, 426–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Takeda, D. Y., Shibata, Y., Parvin, J. D. & Dutta, A. Recruitment of ORC or CDC6 to DNA is sufficient to create an artificial origin of replication in mammalian cells. Genes Dev. 19, 2827–2836 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schaarschmidt, D., Baltin, J., Stehle, I. M., Lipps, H. J. & Knippers, R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J. 23, 191–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Krysan, P. J., Smith, J. G. & Calos, M. P. Autonomous replication in human cells of multimers of specific human and bacterial DNA sequences. Mol. Cell. Biol. 13, 2688–2696 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Méchali, M. & Kearsey, S. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 38, 55–64 (1984).

    Article  PubMed  Google Scholar 

  25. Hyrien, O., Maric, C. & Mechali, M. Transition in specification of embryonic metazoan DNA replication origins. Science 270, 994–997 (1995). References 24 and 25 showed that genomic replication can proceed without sequence-specific origins during early frog embryogenesis, but specification of replication origins occurs concurrent with chromatin remodelling after mid-blastula transition. These studies suggest that replication initiation sites are flexible and can change during embryonic development.

    Article  CAS  PubMed  Google Scholar 

  26. Gilbert, D. M. Making sense of eukaryotic DNA replication origins. Science 294, 96–100 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, L., Zhang, H. & Tower, J. Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification. Genes Dev. 15, 134–146 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aladjem, M., Rodewald, L.-W., Kolman, J. L. & Wahl, G. M. Genetic dissection of a mammalian replicator in the human β-globin locus. Science 281, 1005–1009 (1998). Mammalian replicator sequences can initiate replication when taken from their native sites to ectopic locations, suggesting that the ability to initiate replication in metazoa is determined in cis.

    Article  CAS  PubMed  Google Scholar 

  29. Paixao, S. et al. Modular structure of the human lamin B2 replicator. Mol. Cell. Biol. 24, 2958–2967 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cohen, S. M. et al. Complementation of replication origin function in mouse embryonic stem cells by human DNA sequences. Genomics 84, 475–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Dijkwel, P. A., Wang, S. & Hamlin, J. L. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol. Cell. Biol. 22, 3053–3065 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dijkwel, P. A., Mesner, L. D., Levenson, V. V., d'Anna, J. & Hamlin, J. L. Dispersive initiation of replication in the Chinese hamster rhodopsin locus. Exp. Cell Res. 256, 150–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Aladjem, M. I. et al. Replication initiation patterns in the β-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions. Mol. Cell. Biol. 22, 442–452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, J. et al. The origin of a developmentally regulated IgH replicon is located near the border of regulatory domains for IgH replication and expression. Proc. Natl Acad. Sci. USA 99, 13693–13698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altman, A. L. & Fanning, E. The Chinese hamster dihydrofolate reductase replication origin beta is active at multiple ectopic chromosomal locations and requires specific DNA sequence elements for activity. Mol. Cell. Biol. 21, 1098–1110 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolon, Y. T. & Bielinsky, A. K. The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Res. 34, 5069–5080 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Theis, J. F. & Newlon, C. S. Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites. Mol. Cell. Biol. 21, 2790–2801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, S. M. & Huberman, J. A. Multiple orientation-dependent, synergistically interacting, similar domains in the ribosomal DNA replication origin of the fission yeast, Schizosaccharomyces pombe. Mol. Cell. Biol. 18, 7294–7303 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Altman, A. L. & Fanning, E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol. Cell. Biol. 24, 4138–4150 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, L. et al. The human β-globin replication initiation region consists of two modular independent replicators. Mol. Cell. Biol. 24, 3373–3386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ghosh, M., Liu, G., Randall, G., Bevington, J. & Leffak, M. Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol. Cell. Biol. 24, 10193–10207 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Delgado, S., Gomez, M., Bird, A. & Antequera, F. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J. 17, 2426–2435 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Antequera, F. Genomic specification and epigenetic regulation of eukaryotic DNA replication origins. EMBO J. 23, 4365–4370 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, L., Lin, C. M., Lopreiato, J. O. & Aladjem, M. I. Cooperative sequence modules determine replication initiation sites at the human β-globin locus. Hum. Mol. Genet. 15, 2613–2622 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Aladjem, M. I., Falaschi, A. & Kowalski, D. in DNA Replication and Human Disease (ed. M. L. DePamphilis) 31–61 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

  46. Machida, Y. J. & Dutta, A. Cellular checkpoint mechanisms monitoring proper initiation of DNA replication. J. Biol. Chem. 280, 6253–6256 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Waltz, S. E., Trivedi, A. A. & Leffak, M. DNA replication initiates non-randomly at multiple sites near the c-myc gene in HeLa cells. Nucleic Acids Res. 24, 1887–1894 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rowntree, R. K. & Lee, J. T. Mapping of DNA replication origins to noncoding genes of the X-inactivation center. Mol. Cell. Biol. 26, 3707–3717 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel, P. K., Arcangioli, B., Baker, S. P., Bensimon, A. & Rhind, N. DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell 17, 308–316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Friedman, K. L. et al. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev. 10, 1595–1607 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Brewer, B. J. & Fangman, W. L. Initiation at closely spaced replication origins in a yeast chromosome. Science 262, 1728–1731 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Vujcic, M., Miller, C. A. & Kowalski, D. Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol. Cell. Biol. 19, 6098–6109 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mesner, L. D., Li, X., Dijkwel, P. A. & Hamlin, J. L. The dihydrofolate reductase origin of replication does not contain any nonredundant genetic elements required for origin activity. Mol. Cell. Biol. 23, 804–814 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Austin, R. J., Orr-Weaver, T. L. & Bell, S. P. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev. 13, 2639–2649 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beall, E. L. et al. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420, 833–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Bosco, G., Du, W. & Orr-Weaver, T. L. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nature Cell Biol. 3, 289–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Kalejta, R. F. et al. Distal sequences, but not ori-β/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol. Cell 2, 797–806 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Aladjem, M. I. et al. Participation of the human β-globin locus control region in initiation of DNA replication. Science 270, 815–819 (1995). References 57 and 58 showed that distal DNA sequences affect the location of replication initiation events in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  59. Hayashida, T. et al. Replication initiation from a novel origin identified in the Th2 cytokine cluster locus requires a distant conserved noncoding sequence. J Immunol. 176, 5446–5454 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Saha, S., Shan, Y., Mesner, L. D. & Hamlin, J. L. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries. Genes Dev. 18, 397–410 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu, H. et al. Preventing gene silencing with human replicators. Naure Biotechnol. 24, 572–576 (2006).

    CAS  Google Scholar 

  62. Maric, C., Benard, M. & G., P. Developmentally regulated usage of Physarum DNA replication origins. EMBO Rep. 4, 474–478 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Norio, P. et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 20, 575–587 (2005). Replication patterns visualized on single DNA fibres show that new replication initiation sites are activated during the differentiation of B cells, coincident with an advanced replication timing.

    Article  CAS  PubMed  Google Scholar 

  64. Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001). Replication does not correlate with transcriptional activity in yeast.

    Article  CAS  PubMed  Google Scholar 

  65. Segurado, M., De Luis, A. & Antequera, F. Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep. 4, 1048–1053 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nieduszynski, C. A., Blow, J. J. & Donaldson, A. D. The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription. Nucleic Acids Res. 33, 2410–2420 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Donato, J. J., Chung, S. C. & Tye, B. K. Genome-wide hierarchy of replication origin usage in Saccharomyces cerevisiae. PLoS Genet. 2, e141 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mesner, L. D. & Hamlin, J. L. Specific signals at the 3′ end of the DHFR gene define one boundary of the downstream origin of replication. Genes Dev. 19, 1053–1066 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lunyak, V. V., Ezrokhi, M., Smith, H. S. & Gerbi, S. A. Developmental changes in the Sciara II/9A initiation zone for DNA replication. Mol. Cell. Biol. 22, 8426–8437 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cohen, S. M., Brylawski, B. P., Cordeiro-Stone, M. & Kaufman, D. G. Same origins of DNA replication function on the active and inactive human X chromosomes. J. Cell Biochem. 88, 923–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Gomez, M. & Brockdorff, N. Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage. Proc. Natl Acad. Sci. USA. 101, 6923–6928 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sasaki, T. et al. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol. Cell. Biol. 26, 1051–1062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Grewal, S. I. & Elgin, S. C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kong, D. & DePamphilis, M. L. Site-specific ORC binding, pre-replication complex assembly and DNA synthesis at Schizosaccharomyces pombe replication origins. EMBO J. 21, 5567–5576 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lipford, J. R. & Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Avni, D. et al. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol. Cell 12, 735–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Danis, E. et al. Specification of a DNA replication origin by a transcription complex. Nature Cell Biol. 6, 721–730 (2004). Chromatin remodelling by recruitment of a transcription complex specifies a replication origin in X. laevis egg extracts, which normally initiate replication in a non-sequence-specific manner.

    Article  CAS  PubMed  Google Scholar 

  80. Iizuka, M., Matsui, T., Takisawa, H. & Smith, M. M. Regulation of replication licensing by acetyltransferase Hbo1. Mol. Cell. Biol. 26, 1098–1108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pappas, D. L. Jr, Frisch, R. & Weinreich, M. The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication. Genes Dev. 18, 769–781 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479–2484 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394 (2003). The location of replication initiation sites can change with metabolic conditions, such as the size of nucleotide pools in cells.

    Article  CAS  PubMed  Google Scholar 

  84. Dimitrova, D. S. & Gilbert, D. M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell 4, 983–993 (1999). The timing of DNA replication for each particular mammalian locus is specified during a definite time during the G1 phase of the cell cycle, preceding the origin decision point.

    Article  CAS  PubMed  Google Scholar 

  85. Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y. & Mechali, M. Mitotic remodeling of the replicon and chromosome structure. Cell 123, 787–801 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Wu, R., Singh, P. B. & Gilbert, D. M. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J. Cell Biol. 174, 185–194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. White, E. J. et al. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proc. Natl Acad. Sci. USA 101, 17771–17776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Woodfine, K. et al. Replication timing of human chromosome 6. Cell Cycle 4, 172–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Singh, N. et al. Coordination of the random asynchronous replication of autosomal loci. Nature Genet. 33, 339–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Jeon, Y. et al. Temporal profile of replication of human chromosomes. Proc. Natl Acad. Sci. USA 102, 6419–6424 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. LaSalle, J. M. & Lalande, M. Domain organization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11–13 contribution. Nature Genet. 9, 386–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Simon, I. et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929–932 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Gribnau, J., Hochedlinger, K., Hata, K., Li, E. & Jaenisch, R. Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev. 17, 759–773 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yompakdee, C. & Huberman, J. A. Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J. Biol. Chem. 279, 42337–42344 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Cimbora, D. M. et al. Long-distance control of origin choice and replication timing in the human β-globin locus are independent of the locus control region. Mol. Cell. Biol. 20, 5581–5591 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Forrester, W. C. et al. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev. 4, 1637–1649 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Simon, I. et al. Developmental regulation of DNA replication timing at the human b-globin locus. EMBO J. 20, 6150–6157 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Feng, Y. Q. et al. The human β-globin locus control region can silence as well as activate gene expression. Mol. Cell. Biol. 25, 3864–3874 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin, C. M., Fu, H., Martinovsky, M., Bouhassira, E. & Aladjem, M. I. Dynamic alterations of replication timing in mammalian cells. Curr. Biol. 13, 1019–1028 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Chang, B. H., Smith, L., Huang, J. & Thayer, M. Chromosomes with delayed replication timing lead to checkpoint activation, delayed recruitment of Aurora B and chromosome instability. Oncogene 26, 1852–1861 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Breger, K. S., Smith, L. & Thayer, M. J. Engineering translocations with delayed replication: evidence for cis control of chromosome replication timing. Hum. Mol. Genet. 14, 2813–2827 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Epner, E., Forrester, W. C. & Groudine, M. Asynchronous DNA replication within the human β-globin gene locus. Proc. Natl Acad. Sci. USA 85, 8081–8085 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dhar, V., Skoultchi, A. I. & Schildkraut, C. L. Activation and repression of a β-globin gene in cell hybrids is accompanied by a shift in its temporal replication. Mol. Cell. Biol. 9, 3524–3532 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Aparicio, J. G., Viggiani, C. J., Gibson, D. G. & Aparicio, O. M. The Rpd3–Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4769–4780 (2004). References 105 and 106 showed that histone acetylation of surrounding chromatin regulates the timing of initiation of DNA replication in a subset of replicators in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zegerman, P. & Diffley, J. F. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Tanaka, S. et al. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445, 328–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Marheineke, K. & Hyrien, O. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. 279, 28071–28081 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Herrick, J., Stanislawski, P., Hyrien, O. & Bensimon, A. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J. Mol. Biol. 300, 1133–1142 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Gregoire, D., Brodolin, K. & Mechali, M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep. 7, 812–816 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Perry, P. et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 3, 1645–1650 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Hiratani, I., Leskovar, A. & Gilbert, D. M. Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proc. Natl Acad. Sci. USA 101, 16861–16866 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou, J., Ermakova, O. V., Riblet, R., Birshtein, B. K. & Schildkraut, C. L. Replication and subnuclear location dynamics of the immunoglobulin heavy-chain locus in B-lineage cells. Mol. Cell. Biol. 22, 4876–4889 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Foulk, M. S. et al. Ecdysone induces transcription and amplification in Sciara coprophila DNA puff II/9A. Dev. Biol. 299, 151–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Bielinsky, A. K. et al. Origin recognition complex binding to a metazoan replication origin. Curr. Biol. 11, 1427–1431 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Bulger, M. et al. Conservation of sequence and structure flanking the mouse and human β-globin loci: the β-globin genes are embedded within an array of odorant receptor genes. Proc. Natl Acad. Sci. USA 96, 5129–5134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kitsberg, D., Selig, S., Keshet, I. & Cedar, H. Replication structure of the human β-globin gene domain. Nature 366, 588–590 (1993). The first demonstration that DNA sequences determine the location of initiation events in mammals, by reporting that deletion of the replication origin at the human β -globin locus prevents initiation of DNA replication within that locus.

    Article  CAS  PubMed  Google Scholar 

  119. Prioleau, M. N., Gendron, M. C. & Hyrien, O. Replication of the chicken β-globin locus: early-firing origins at the 5′ HS4 insulator and the rho- and βA-globin genes show opposite epigenetic modifications. Mol. Cell. Biol. 23, 3536–3549 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dazy, S., Gandrillon, O., Hyrien, O. & Prioleau, M. N. Broadening of DNA replication origin usage during metazoan cell differentiation. EMBO Rep. 7, 806–811 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Callejo, M., Sibani, S., Di Paola, D., Price, G. G. & Zannis-Hadjopoulos, M. Identification and functional analysis of a human homologue of the monkey replication origin ors8. J. Cell Biochem. 99, 1606–1615 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618–621 (1998). The first report that cells activate a cell-cycle checkpoint that inhibits initiation of DNA replication in late-replicating loci in response to DNA damage.

    Article  CAS  PubMed  Google Scholar 

  123. Shimada, K., Pasero, P. & Gasser, S. M. ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev. 16, 3236–3252 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Weinberger, M. et al. Apoptosis in budding yeast caused by defects in initiation of DNA replication. J. Cell Sci. 118, 3543–3553 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Marchetti, M. A., Weinberger, M., Murakami, Y., Burhans, W. C. & Huberman, J. A. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J. Cell Sci. 119, 124–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Huang, D. & Koshland, D. Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins. Genes Dev. 17, 1741–1754 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lengronne, A. & Schwob, E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol. Cell 9, 1067–1078 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Davidson, I. F., Li, A. & Blow, J. J. Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol. Cell 24, 433–443 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhu, W., Chen, Y. & Dutta, A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol. Cell. Biol. 24, 7140–7150 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Morrison, T. L., Yakisich, J. S., Cassidy-Hanley, D. & Kapler, G. M. TIF1 Represses rDNA replication initiation, but promotes normal S phase progression and chromosome transmission in Tetrahymena. Mol. Biol. Cell 16, 2624–2635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yakisich, J. S. & Kapler, G. M. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome. Nucleic Acids Res. 34, 620–634 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Walter, J. C. & Araki, H. in DNA Replication and Human Disease (ed. DePamphilis, M. L.) 89–104 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2006).

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank F. Antequera, O. Aparicio, G. Biamonti, A. Bielinsky, W. Burhans, B. Calvi, M. DePamphilis, A. Dutta, A. Falaschi, S. Gerbi, M. Giacca, D. Gilbert, J. Hamlin, J. Huberman, O. Hyrien, G. Kapler, J. Lee, E. Fanning, T. Kelly, M. Leffak, D. Livingston, M. Mechali, S. Miyatake, C. Pearson, M-N. Prioleau, Y. Pommier, N. Rhind, C. Schildkraut, M. Thayer, J. Tower, K. Tsutsumi, J. Walter and M. Zannis-Hadjopoulos, who shared unpublished data or discussed pertinent issues, and to apologize to those whose primary work could not be cited directly due to space restrictions. Research in the author's laboratory is supported by the Intramural Research Program of the US National Cancer Institute, Centre for Cancer Research, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Mirit I. Aladjem's homepage

Glossary

Epigenetic

A mitotically stable change in gene expression that depends not on a change in DNA sequence, but on covalent modifications of DNA or chromatin proteins such as histones.

Replication licensing

A process that allows chromatin to become competent for DNA synthesis during the G1 phase of the cell cycle by the ordered loading of proteins (including the origin recognition complex (ORC) and minichromosome maintenance (MCM) complexes, CDC6 and CDT1) to form pre-replication complexes. In mitotic cells, several mechanisms prevent licensing between the onset of S phase and the completion of mitosis to restrict replication to once in a cell cycle.

Matrix attachment site

Also known as a scaffold attachment site. A region of DNA that is attached to the nuclear matrix, a network of fibrous proteins that contributes to nuclear organization.

CpG island

Sequences of 200 bp or more that have high GC content and a high frequency of CpG dinucleotides. CpG islands are found upstream of many mammalian genes.

DNase I hypersensitive site

A chromosomal region that is highly accessible to cleavage by DNase I. Such sites are associated with open chromatin conformations and transcriptional activity.

Histone modifications

Post-translational modifications of histone tails involve characteristic clusters of modifications, including acetylation, phosphorylation, ubiquitylation, methylation and ADP-ribosylation, which combine to create an epigenetic mechanism for the regulation of gene expression.

Histone variants

A family of genes encoding multiple non-allelic primary-sequence variants of histone proteins. Some histone variants have specialized functions in gene regulation, damage recognition or labelling of specific chromatin regions such as centromeres.

Nucleosome

The fundamental unit into which DNA and histones are packaged in eukaryotic cells. It is the basic structural subunit of chromatin and consists of 200 bp of DNA and an octamer of histone proteins, comprising two of each core histone.

Heterochromatin

Chromosomal material that is tightly coiled and inactive in terms of gene expression.

Euchromatin

The lightly staining regions that generally contain decondensed, transcriptionally active regions of the genome.

Imprinted genes

Refers to the epigenetic marking of a locus on the basis of parental origin, which results in monoallelic gene expression.

Mid-blastula transition

A stage during embryogenesis when zygotic transcription starts and cell divisions become asynchronous.

Endoreplication

Repeated replication of genomic DNA during the S phase of the cell cycle without the subsequent completion of mitosis and/or cytokinesis. Endoreplication results in polyploidy (cells with more than two haploid sets of chromosomes, for example, megakaryocytes and trophoblast cells) or polyteny (large, multistranded chromosomes, for example, in cells of several insects' salivary glands).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aladjem, M. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 8, 588–600 (2007). https://doi.org/10.1038/nrg2143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing