Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mammalian karyotype evolution

Key Points

  • Animal karyotypes display a great diversity in number and morphology.

  • Mammalian genomes can be resolved by chromosome painting into comparatively large conserved chromosomal segments.

  • Rearrangement of these segments into different combinations explains much of the observed karyotype variation among species.

  • New segment combinations are produced during evolution by non-allelic homologous recombination and other errors.

  • Cross-species chromosome painting with human chromosome-specific DNA reveals associations of syntenic segments in mammalian karyotypes, some of which are recently derived and some of which are ancestral.

  • These associations can be used to determine phylogenetic relationships between species and across all mammalian orders and to predict the ancestral mammalian karyotype.

Abstract

The chromosome complements (karyotypes) of animals display a great diversity in number and morphology. Against this background, the genomes of all species are remarkably conserved, not only in transcribed sequences, but also in some chromosome-specific non-coding sequences and in gene order. A close examination with chromosome painting shows that this conservation can be resolved into small numbers of large chromosomal segments. Rearrangement of these segments into different combinations explains much of the observed diversity in species karyotypes. Here we discuss how these rearrangements come about, and show how their analysis can determine the evolutionary relationships of all mammals and their descent from a common ancestor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian evolutionary tree.
Figure 2: Mapping human homologies on aardvark chromosomes.
Figure 3: Ancestral eutherian karyotype.
Figure 4: Primate evolutionary tree.
Figure 5: Carnivore evolutionary tree.
Figure 6: Cetartiodactyl evolutionary tree.
Figure 7: Rodent evolutionary tree.

Similar content being viewed by others

References

  1. Darwin, C. The Origin Of Species By Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life Ch 15 (John Murray, London, 1859).

    Google Scholar 

  2. Linnaeus, C. Systema Naturae (1758) 10th edn (reprinted by the British Museum: Natural History, London, 1956).

    Google Scholar 

  3. Dobigny, G. et al. Cytogenetics and cladistics. Syst. Biol. 53, 470–484 (2004). A review emphasising the importance of cytogenetics and particularly of comparative chromosome painting in phylogenetic studies.

    Article  PubMed  Google Scholar 

  4. Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001). A concise example of how the application of molecular phylogenetic methods provides evidence for the basal split between Afrotheria and other placental mammals about 103 mya at the time of the separation of South America and Africa.

    Article  CAS  PubMed  Google Scholar 

  5. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Murphy, W. J. et al. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309, 613–617 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, F. et al. A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. Chromosome Res. 5, 109–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Searle, J. B. A hybrid zone comprising staggered chromosomal clines in the house mouse (Mus musculus domesticus) Proc. R. Soc. Lond. B Biol. Sci. 246, 47–52 (1991).

    Article  CAS  Google Scholar 

  9. Gropp, A. et al. Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma 39, 265–288 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. Ferguson-Smith, M. A. in Human Genetics, Proceedings of IVth International Congress of Human Genetics Paris. Excerpta Medica, Amsterdam, 195–211 (1971).

    Google Scholar 

  11. Yang, F. et al. A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62, 189–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Wienberg, J. et al. Molecular cytotaxonomy of primates by chromosomal in situ supression hybridization. Genomics 8, 347–350 (1990). One of the earliest studies using FISH to investigate karyotype evolution.

    Article  CAS  PubMed  Google Scholar 

  13. Shedlock, A. M., Okada N. SINE insertions: powerful tools for molecular systematics. Bioessays 22, 148–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eichler, E. E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the primate genome. Nature Rev. Genet. 3, 65–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kehrer-Sawatzki, H. & Cooper, D. Structural divergence between the human and chimpanzee genomes. Human Genet. 120, 759–778 (2007).

    Article  CAS  Google Scholar 

  18. Tjio, J. H. & Levan, A. The chromosome number of man. Hereditas 42, 1–6 (1956).

    Article  Google Scholar 

  19. Gartler, S. M. The chromosome number in humans: a brief history. Nature Rev. Genet. 7, 655–660 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Hsu, T. C. & Benirschke, K. An Atlas of Mammalian Chromosomes (Springer, Berlin: Heidelberg, 1967). These authors provided accurate karyotypes of many species to assist cytotaxonomy.

    Book  Google Scholar 

  21. Wurster, D. H. & Benirschke, K. Comparative cytogenetic studies in the order Carnivora. Chromosoma 24, 336–382 (1968). One of the first classical studies on chromosome conservation among Carnivora.

    Article  CAS  PubMed  Google Scholar 

  22. Seabright, M. A rapid banding technique for human chromosomes. Lancet 2, 971–972 (1971). An early and most widely adopted technique for G-banding of chromosomes.

    Article  CAS  PubMed  Google Scholar 

  23. Sumner, A. T. et al. New technique for distinguishing between human chromosomes. Nature New Biol. 232, 31–32 (1971).

    Article  CAS  PubMed  Google Scholar 

  24. Lichter, P. et al. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries Hum Genet. 80, 224–234 (1988). The first description of what later was known as chromosome painting.

    Article  CAS  PubMed  Google Scholar 

  25. Scherthan, H. et al. Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet. 6, 342–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Telenius, H. et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4, 257–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Ferguson-Smith, M. A. Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur. J. Hum.Genet 5, 253–265 (1997).

    CAS  PubMed  Google Scholar 

  28. Rens, W. et al. Cross-species chromosome painting. Nature Protocols 1, 783–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lupski, J. R. & Stankiewicz, P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet. 1, e49 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pardo-Manuel de Villena, F. & Sapienza, C. Female meiosis drives karyotypic evolution in mammals genetics. Genetics 159, 1179–1189 (2001). A theory proposing the link between the direction of karyotype evolution and meiotic drive.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kolnicki, R. L. Kinetochore reproduction in animal evolution: cell biological explanation of karyotypic fission theory. Proc. Natl Acad. Sci. USA 97, 9493–9497 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, F. et al. A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103, 642–652 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Rens, W. et al. Incomplete sister chromatid separation of long chromosome arms. Chromosoma 115, 481–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bininda-Emonds, O. R. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, F. et al. Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc. Natl Acad. Sci. USA, 100, 1062–1066 (2003). The ancestral karyotype of all placental mammals is proposed on the basis of an analysis of representative species of Afrotheria, the most basal clade. The aardvark retains all the ancestral syntenic associations found by cross-species chromosome painting with human probes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robinson, T. J. et al. Cross-species chromosome painting in the golden mole and elephant shrew: support for the mammalian clades Afrotheria and Afroinsectiphillia but not Afroinsectivora. Proc. R. Soc. London B Biol. Sci. 271, 1477–1484 (2004).

    Article  CAS  Google Scholar 

  37. Springer, M. S. et al. Endemic African mammals shake the phylogenetic tree. Nature 388, 61–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Stanhope, M. J. et al. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl Acad. Sci. USA 95, 9967–9972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, F. et al. Comparative genome maps of the pangolin, hedgehog, sloth, anteater, and human revealed by cross-species chromosome painting: further insight into the ancestral karyotype and genome evolution of eutherian mammals. Chromosome Res. 14, 283–296 (2006). The most recent comparison of the karyotypes of Pholidota, Eulipotyphla and Xenarthra using chromosome painting.

    Article  CAS  PubMed  Google Scholar 

  40. Graphodatsky, A. S. et al. Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet. Cell Genet. 90, 275–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, F. et al. Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res. 8, 393–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Graphodatsky, A. S. et al. A comparative chromosome map of the Arctic fox, red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res. 8, 253–263 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Rens, W. et al. Reversal and convergence in marsupial chromosome evolution. Cytogenet. Genome Res 102, 282–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Pardini, A. T. et al. Chromosome painting among Proboscidae, Hyracoidea and Sirenia: support for Paenungulata (Afrotheria, Mammalia) but not Tethytheria. Proc. R. Soc. B Biol. Sci. 274, 1333–1340 (2007).

    Article  CAS  Google Scholar 

  45. Gilbert, C. et al. Chromosome painting and molecular dating indicate a low rate of chromosome evolution in golden moles (Mammalia, Chrysochloridae). Chromosome Res. 14, 793–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Kellogg, M. et al. Chromosome painting in the manatee supports Afrotheria and Paenungulata. BMC Evol. Biol. 7, 6 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eizirik E. et al. Molecular dating and biogeography of the early placental mammal radiation. J. Hered. 92, 212–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Dobigny, G. et al. Low rate of genomic re-patterning in Xenarthra inferred from chromosome painting data. Chromosome Res. 13, 651–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Murphy, W. J. et al. Using genomic data to unravel the root of the placental mammal phylogeny Genome Res. 17, 413–421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Froenicke, L. Origins of primate chromosomes as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences. Cytogenet. Genome Res. 108, 122–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Froenicke, L. et al. Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res. 16, 306–310 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. IJdo, J. W. et al. Origin of human chromosome 2: an ancestral telomere–telomere fusion. Proc. Natl Acad. Sci. USA 88, 9051–9055 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu, E. H. Y. & Bender, M. A. Cytogenetics and evolution of primates. Ann. NY Acad. Sci. 102, 253–266 (1962).

    Article  CAS  PubMed  Google Scholar 

  54. Stanyon, R. et al. Molecular and classical cytogenetic analyses demonstrate an apomorphic reciprocal chromosomal translocation in Gorilla gorilla. Am. J. Phys. Anthrop. 88, 245–250 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Ferguson-Smith, M. A. et al. The impact of chromosome sorting and painting on the comparative analysis of primate genomes. Cytogenet. Genome Res. 108, 112–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Eder, V. et al. Chromosome 6 phylogeny in primates and centromere repositioning. 20, 1506–1512 (2003).

  57. Nie, W. et al. Chromosome painting between human and lorisiform prosimians: evidence for the HSA 7/16 synteny in the primate ancestral karyotype. Am. J. Phys. Anthropol. 129, 250–259 (2006).

    Article  PubMed  Google Scholar 

  58. Mueller, S. et al. Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108, 393–400 (1999).

    Article  Google Scholar 

  59. Mueller, S. et al. Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis) Cytogenet. Cell Genet. 78, 260–271 (1997).

    Article  Google Scholar 

  60. Stanyon, R. et al. Reciprocal chromosome painting between a New World primate, the woolly monkey, and humans. Chromosome Res. 9, 97–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. de Oliviera, E. H. et al. The phylogeny of howler monkeys (Alouatta, Platyrrhini): reconstruction by multicolour cross-species chromosome painting. Chromosome Res. 10, 669–683 (2002).

    Article  Google Scholar 

  62. Finelli, P. et al. Reciprocal chromosome painting shows that the great difference in diploid number between human and African green monkey is mostly due to non-Robertsonian fissions. Mamm. Genome 10, 713–718 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Wienberg, J. Fluorescence in situ hybridization to chromosomes as a tool to understand human and primate evolution. Cytogenet. Genome Res. 108, 139–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Mueller, S. et al. Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum. Genet. 113, 493–501 (2003).

    Article  Google Scholar 

  65. Muller, S. et al. Cross species colour segmenting: a novel tool in human karyotype analysis. Cytometry 33, 445–452 (1997).

    Article  Google Scholar 

  66. Bininda-Edmonds, O. R. P. et al. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol. Rev. 74, 143–175 (1999).

    Article  Google Scholar 

  67. Graphodatsky, A. S. et al. Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet.Genome Res. 96, 137–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Nie, W. et al. The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res. 10, 209–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Tian, Y. et al. Chromosome evolution in bears: reconstructing phylogenetic relationships by cross-species chromosome painting. Chromosome Res. 12, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Perelman, P. L. et al. Karyotypic conservatism in the suborder Feliformia (Order Carnivora) Cytogenet. Genome Res. 108, 348–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Nash, W. G. et al. Comparative genomics: tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet. Cell Genet. 83, 182–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Cavagna, P. et al. Genomic homology of the domestic ferret with cats and humans Mamm. Genome 11, 866–870 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Hsu, T. C. et al. Karyological studies of nine species of Felidae. Am. Nat. 97, 225–234 (1963).

    Article  Google Scholar 

  74. Graphodatsky, A. S. et al. Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet. Cell Genet. 92, 243–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Froenicke, L. et al. Chromosomal homeologies between human, harbour seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH Chromosoma 106, 108–113 (1997). Compares the human and seal karyotypes, showing the high conservation of Pinnipedia karyotypes and their similarity to cat chromosomes.

    Article  CAS  Google Scholar 

  76. Balmus, G. et al. Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype Chromosome Res. 15, 499–514 (2007). The first reconstruction of the Cetartiodactyla ancestral karyotype from a comparison of camel, cow and pig chromosomes.

    Article  CAS  PubMed  Google Scholar 

  77. Bielec, P. E. et al. Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet. Cell Genet. 81, 18–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, F. et al. Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res. 12, 65–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Volleth, M. et al. A comparative Zoo-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Res. 10, 477–497 (2002). A comprehensive study of bat karyotypes by comparative chromosome painting.

    Article  CAS  PubMed  Google Scholar 

  80. Li, T. et al. Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting. Chromosome Res. 12, 317–335 (2004).

    Article  PubMed  Google Scholar 

  81. Richard, F. et al. Highly conserved chromosomes in an Asian squirrel (Menetes berdmorei, Rodentia: Sciuridae) as demonstrated by Zoo-FISH with human probes. Chromosome Res. 11, 597–603 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Stanyon, R. et al. Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82, 245–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Li, T. et al. Karyotypic evolution of the family Sciuridae: inferences from the genome organizations of ground squirrels Cytogenet Genome Res. 112, 270–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Korstanje, R. et al. Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet. Cell Genetics 86, 317–322 (1999).

    Article  CAS  Google Scholar 

  85. Romanenko, S. A. et al. Reciprocal chromosome painting between three laboratory rodent species. Mamm. Genome 17, 1183–1192 (2006).

    Article  PubMed  Google Scholar 

  86. Romanenko, S. A. et al. Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. 15, 293–298 (2007). Comparative maps are presented between 20 muroid species investigated by chromosome painting and G-band comparisons.

  87. Sitnikova, N. A. et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting Chromosome Res. 15, 447–456 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Murphy, W. J. et al. Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol. 2, R0005.1–R0005.8 (2001).

    Article  Google Scholar 

  89. Yang, F. et al. Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet.Genome Res. 102, 235–243 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Trifonov, V. et al. Cross-species chromosome painting in the Perissodactyla: delimitation of homologous regions in Burchell's Zebra (Equus burchellii) and the White (Ceratotherium simum) and Black Rhinoceros (Diceros bicornis) Cytogenet. Genome Res. 103, 104–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Rens, W. et al. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc. Natl Acad. Sci. USA 101, 16257–16261 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rens, W. et al. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol. (in the press).

  93. Kohn, M. et al. Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet. 22, 203–210 (2006). Demonstrates how the genome databases of fish, birds and mammals can be mined in silico for constructing an ancestral vertebrate karyotype.

    Article  CAS  PubMed  Google Scholar 

  94. Mikkelsen, TS. et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences Nature 447, 167–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. O'Brien, S. J. et al. Atlas of Mammalian Chromosomes (John Wiley & Sons, New Jersey, 2006). An excellent resource of G-banded karyotypes of many mammalian species.

    Book  Google Scholar 

  96. Huchon, D. et al. Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol. 19, 1053–1065 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Poux, C. et al. Arrival and diversification of caviomorph rodents and plathyrrhine primates in South America. Syst. Biol. 55, 228–244 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Yang for Figure 2a and for helpful comments on the manuscript. The work of the Cambridge Resource Centre for Comparative Genomics is supported by the Wellcome Trust, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm A. Ferguson-Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Cambridge Resource Centre for Comparative Genomics

CHROMHOME

Ensembl Mouse

Glossary

Eutherians

Placental mammals (Placentalia).

Segmental duplication

Duplicated blocks of genomic DNA sequence that account for 5–10% of the human genome. Illegitimate recombination between such repeats on different chromosomes can lead to chromosome rearrangements.

Chromosome banding

Chromosome preparations are stained to reveal horizontal light and dark bands across the chromosome arms that serve to identify each chromosome.

Flow cytometry

A procedure whereby cells or chromosomes are measured and sorted in a fluid suspension.

Interstitial insertion

A chromosome rearrangement in which a segment is excised from one region and inserted into another.

Synteny

DNA sequences that are located on the same chromosome are syntenic.

Therians

Marsupials (metatherians) and eutherians (monotremes are prototherians).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson-Smith, M., Trifonov, V. Mammalian karyotype evolution. Nat Rev Genet 8, 950–962 (2007). https://doi.org/10.1038/nrg2199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing