Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal abnormalities and their developmental origin

Key Points

  • The kidney is a central organ of the mammalian organism that, apart from blood filtration, is essential for the control of blood pressure and pH.

  • Congenital abnormalities of the kidneys and the urinary tract (CAKUT) are among the most frequent abnormalities in the newborn child, and often lead to renal failure in adult life.

  • Understanding kidney development is crucial to comprehending the molecular basis of CAKUT syndrome in humans, and to developing future therapeutic interventions, such as cell-replacement therapies and the growth of renal organs in vitro.

  • Central to the induction of the metanephros (permanent kidney) is the glial-derived neurotrophic factor (GDNF)–RET signalling pathway. Complex molecular networks tightly control GDNF expression, and restrict it to the presumptive metanephric mesenchyme to ensure outgrowth of a single ureter.

  • A molecular cascade including WNT–β-catenin signalling induces nephron formation in the metanephric mesenchyme surrounding the ureter.

  • Patterning of the nephron along the proximal–distal axis is controlled by transcription factors such as the Wilms tumour transcription factor (WT1) and Iroquois-class homeodomain proteins (IRX3), as well as signalling pathways such as the Notch–Delta pathway.

  • Wilms tumours are developmental tumours that can be caused by mutations in WT1 or WTX. New evidence suggests that the formation of Wilms tumours is tightly linked to abnormal β-catenin signalling.

  • The complex development of the kidney is achieved through multifunctional proteins and the combinatorial use of transcription factors to activate or repress genes in a specific cell type.

Abstract

Congenital abnormalities of the kidney and urinary tract (CAKUT) occur in 1 out of 500 newborns, and constitute approximately 20–30% of all anomalies identified in the prenatal period. CAKUT has a major role in renal failure, and there is increasing evidence that certain abnormalities predispose to the development of hypertension and cardiovascular disease in adult life. Moreover, defects in nephron formation can predispose to Wilms tumour, the most frequent solid tumour in children. To understand the basis of human renal diseases, it is essential to consider how the kidney develops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the various steps of kidney formation, and the developmental defects found in human patients.
Figure 2: Essential steps in kidney development.
Figure 3: Molecular pathways that control kidney induction.
Figure 4: Essential steps during nephron induction and patterning.
Figure 5: A model for Wilms tumour formation.

Similar content being viewed by others

References

  1. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Torres, V. E. & Harris, P. C. Mechanisms of disease: autosomal dominant and recessive polycystic kidney diseases. Nature Clin. Pract. Nephrol. 2, 40–55; quiz 55 (2006).

    Article  CAS  Google Scholar 

  3. James, R. G., Kamei, C. N., Wang, Q., Jiang, R. & Schultheiss, T. M. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133, 2995–3004 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Q., Lan, Y., Cho, E. S., Maltby, K. M. & Jiang, R. Odd-skipped related 1 (ODD1) is an essential regulator of heart and urogenital development. Dev. Biol. 288, 582–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Sajithlal, G., Zou, D., Silvius, D. & Xu, P. X. EYA1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev. Biol. 284, 323–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Bouchard, M., Souabni, A., Mandler, M., Neubuser, A. & Busslinger, M. Nephric lineage specification by PAX2 and PAX8. Genes Dev. 16, 2958–2970 (2002). This paper shows that the transcription factors PAX2 and PAX8 are required and sufficient to induce the nephric lineage in the intermediate mesoderm of vertebrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Costantini, F. & Shakya, R. GDNF/RET signaling and the development of the kidney. Bioessays 28, 117–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Dressler, G. R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol. 22, 509–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Xu, P. X. et al. EYA1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nature Genet. 23, 113–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, P. X. et al. SIX1 is required for the early organogenesis of mammalian kidney. Development 130, 3085–3094 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi, H., Kawakami, K., Asashima, M. & Nishinakamura, R. SIX1 and SIX4 are essential for GDNF expression in the metanephric mesenchyme and ureteric bud formation, while SIX1 deficiency alone causes mesonephric-tubule defects. Mech. Dev. 124, 290–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Brophy, P. D., Ostrom, L., Lang, K. M. & Dressler, G. R. Regulation of ureteric bud outgrowth by PAX2-dependent activation of the glial derived neurotrophic factor gene. Development 128, 4747–4756 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Wellik, D. M., Hawkes, P. J. & Capecchi, M. R. HOX11 paralogous genes are essential for metanephric kidney induction. Genes Dev. 16, 1423–1432 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Esquela, A. F. & Lee, S. J. Regulation of metanephric kidney development by growth/differentiation factor 11. Dev. Biol. 257, 356–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Brandenberger, R. et al. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin α8β1 in the embryonic kidney. J. Cell Biol. 154, 447–458 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Linton, J. M., Martin, G. R. & Reichardt, L. F. The ECM protein nephronectin promotes kidney development via integrin α8β1-mediated stimulation of GDNF expression. Development 134, 2501–2509 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Valerius, M. T., Patterson, L. T., Feng, Y. & Potter, S. S. HOXA11 is upstream of Integrin α8 expression in the developing kidney. Proc. Natl Acad. Sci. USA 99, 8090–8095 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, D. & Dressler, G. R. PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev. Biol. 307, 290–299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abdelhak, S. et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nature Genet. 15, 157–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Ruf, R. G. et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1–SIX1–DNA complexes. Proc. Natl Acad. Sci. USA 101, 8090–8095 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoskins, B. E. et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am. J. Hum. Genet. 80, 800–804 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Michos, O. et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134, 2397–2405 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Donovan, M. J. et al. differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev. Genet. 24, 252–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Kume, T., Deng, K. & Hogan, B. L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387–1395 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004). This study examines the role of SLIT2 and its receptor ROBO2 during kidney formation, and shows that they are crucial to suppress the expression of GDNF in the nephrogenic cord that lies rostral to the metanephric blastema. ROBO2 mutations in human patients were identified on the basis of this study (see reference 27).

    Article  CAS  PubMed  Google Scholar 

  27. Lu, W. et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am. J. Hum. Genet. 80, 616–632 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishimura, D. Y. et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nature Genet. 19, 140–147 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Basson, M. A. et al. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev. Biol. 299, 466–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Chi, L. et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial WNT11, mesenchymal GDNF and stromal FGF7 signalling during kidney development. Development 131, 3345–3356 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Basson, M. A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Nyengaard, J. R. & Bendtsen, T. F. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat. Rec. 232, 194–201 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Keller, G., Zimmer, G., Mall, G., Ritz, E. & Amann, K. Nephron number in patients with primary hypertension. N. Engl. J. Med. 348, 101–108 (2003).

    Article  PubMed  Google Scholar 

  34. Welham, S. J., Riley, P. R., Wade, A., Hubank, M. & Woolf, A. S. Maternal diet programs embryonic kidney gene expression. Physiol. Genomics 22, 48–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Quinlan, J. et al. A common variant of the PAX2 gene is associated with reduced newborn kidney size. J. Am. Soc. Nephrol. 18, 1915–1921 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Pepicelli, C. V., Kispert, A., Rowitch, D. H. & McMahon, A. P. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev. Biol. 192, 193–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Kispert, A., Vainio, S., Shen, L., Rowitch, D. H. & McMahon, A. P. Proteoglycans are required for maintenance of WNT-11 expression in the ureter tips. Development 122, 3627–3637 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Majumdar, A., Vainio, S., Kispert, A., McMahon, J. & McMahon, A. P. Wnt11 and RET/GDNF pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 3175–3185 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Sanyanusin, P. et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nature Genet. 9, 358–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Porteous, S. et al. Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu)+/− mutant mice. Hum. Mol. Genet. 9, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Narlis, M., Grote, D., Gaitan, Y., Boualia, S. K. & Bouchard, M. PAX2 and PAX8 regulate branching morphogenesis and nephron differentiation in the developing kidney. J. Am. Soc. Nephrol. 18, 1121–1129 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Clarke, J. C. et al. Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage. Hum. Mol. Genet. 15, 3420–3428 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 10, 1467–1478 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Dudley, A. T., Godin, R. E. & Robertson, E. J. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 13, 1601–1613 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through RET expression. Nature Genet. 27, 74–78 (2001). An examination of the role of retinoic acid signalling, which demonstrates that a reciprocal signalling loop exists between the ureteric bud epithelium and the stromal mesenchyme.

    Article  CAS  PubMed  Google Scholar 

  46. Wilson, J. G. & Warkany, J. Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am. J. Anat. 83, 357–407 (1948).

    Article  CAS  PubMed  Google Scholar 

  47. Vilar, J., Gilbert, T., Moreau, E. & Merlet-Benichou, C. Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Int. 49, 1478–1487 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, Y. et al. Induction of ureter branching as a response to WNT-2B signaling during early kidney organogenesis. Dev. Dyn. 222, 26–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Carroll, T. J., Park, J. S., Hayashi, S., Majumdar, A. & McMahon, A. P. WNT9B plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005). This paper identifies WNT9B as the signal that is released from the ureter to induce nephron formation.

    Article  CAS  PubMed  Google Scholar 

  50. Itaranta, P. et al. WNT-6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis 32, 259–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Stark, K., Vainio, S., Vassileva, G. & McMahon, A. P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by WNT-4. Nature 372, 679–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Iglesias, D. M. et al. Canonical WNT signaling during kidney development. Am. J. Physiol. Renal Physiol. (2007).

  53. Kuure, S., Popsueva, A., Jakobson, M., Sainio, K. & Sariola, H. Glycogen synthase kinase-3 inactivation and stabilization of β-catenin induce nephron differentiation in isolated mouse and rat kidney mesenchymes. J. Am. Soc. Nephrol. 18, 1130–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Plisov, S. et al. Cited1 is a bifunctional transcriptional cofactor that regulates early nephronic patterning. J. Am. Soc. Nephrol. 16, 1632–1644 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Park, J. S., Valerius, M. T. & McMahon, A. P. WNT/β-catenin signaling regulates nephron induction during mouse kidney development. Development 134, 2533–2539 (2007). A detailed examination of the involvement of β-catenin during nephrogenesis.

    Article  CAS  PubMed  Google Scholar 

  56. Sim, E. U. et al. WNT-4 regulation by the Wilms' tumour suppressor gene, WT1. Oncogene 21, 2948–2960 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Torban, E. et al. PAX2 activates WNT4 expression during mammalian kidney development. J. Biol. Chem. 281, 12705–12712 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Grieshammer, U. et al. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132, 3847–3857 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Perantoni, A. O. et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132, 3859–3871 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Kobayashi, A. et al. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132, 2809–2823 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L. & Moon, R. T. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol. Cell. Biol. 15, 2625–2634 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ungar, A. R., Kelly, G. M. & Moon, R. T. Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo. Mech. Dev. 52, 153–164 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Rivera, M. N. & Haber, D. A. Wilms' tumour: connecting tumorigenesis and organ development in the kidney. Nature Rev. Cancer 5, 699–712 (2005).

    Article  CAS  Google Scholar 

  64. Gessler, M. et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Haber, D. A. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61, 1257–1269 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Huff, V. Wilms tumor genetics. Am. J. Med. Genet. 79, 260–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Davies, J. A. et al. Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the WT1 tumour suppressor is required for nephron differentiation. Hum. Mol. Genet. 13, 235–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Moore, A. W., McInnes, L., Kreidberg, J., Hastie, N. D. & Schedl, A. YAC complementation shows a requirement for WT1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845–1857 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Kusafuka, T., Miao, J., Kuroda, S., Udatsu, Y. & Yoneda, A. Codon 45 of the β-catenin gene, a specific mutational target site of Wilms' tumor. Int. J. Mol. Med. 10, 395–399 (2002).

    CAS  PubMed  Google Scholar 

  70. Maiti, S., Alam, R., Amos, C. I. & Huff, V. Frequent association of β-catenin and WT1 mutations in Wilms tumors. Cancer Res. 60, 6288–6292 (2000).

    CAS  PubMed  Google Scholar 

  71. Rivera, M. N. et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315, 642–645 (2007). An important paper that identifies WTX as the mutated gene in 30% of Wilms tumours. The fact that the gene is X-linked implies that a single hit is sufficient to inactivate the gene.

    Article  CAS  PubMed  Google Scholar 

  72. Major, M. B. et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science 316, 1043–1046 (2007). This study links WTX to β-catenin degradation, thus underlining the importance of β-catenin signalling for Wilms tumour formation

    Article  CAS  PubMed  Google Scholar 

  73. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Self, M. et al. SIX2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 25, 5214–5228 (2006). Nephrons are continuously formed from undifferentiated precursor cells at the cortical region of the developing kidney. This paper shows that SIX2 is important for maintenance of metanephric mesechenchymal cells in an undifferentiated state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Osafune, K., Takasato, M., Kispert, A., Asashima, M. & Nishinakamura, R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133, 151–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Schmidt-Ott, K. M. et al. c-kit delineates a distinct domain of progenitors in the developing kidney. Dev. Biol. 299, 238–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kriz, W. & Bankir, L. A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Kidney Int. 33, 1–7 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Reggiani, L., Raciti, D., Airik, R., Kispert, A. & Brändli, A. W. The prepattern transcription factor IRX3 directs nephron segment identity. Genes Dev. (in the press). A landmark paper that not only demonstrates IRX3 to be a master regulator for nephron segment identity, but also nicely shows the extremely high evolutionary conservation between the amphibian pronephros and the mamalian nephron of the metanephros.

  79. Nakai, S. et al. Crucial roles of BRN1 in distal tubule formation and function in mouse kidney. Development 130, 4751–4759 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Lebel, M. et al. The Iroquois homeobox gene Irx2 is not essential for normal development of the heart and midbrain–hindbrain boundary in mice. Mol. Cell. Biol. 23, 8216–8225 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grotewold, L. & Ruther, U. The Fused toes (Ft) mouse mutation causes anteroposterior and dorsoventral polydactyly. Dev. Biol. 251, 129–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic NOTCH2 mutation. Development 128, 491–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Leimeister, C., Schumacher, N. & Gessler, M. Expression of Notch pathway genes in the embryonic mouse metanephros suggests a role in proximal tubule development. Gene Expr. Patterns 3, 595–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Cheng, H. T. et al. NOTCH2, but not NOTCH1, is required for proximal fate acquisition in the mammalian nephron. Development 134, 801–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Cheng, H. T. et al. γ-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development 130, 5031–5042 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, P., Pereira, F. A., Beasley, D. & Zheng, H. Presenilins are required for the formation of comma- and S-shaped bodies during nephrogenesis. Development 130, 5019–5029 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Hrabe de Angelis, M., McIntyre, J. 2nd & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lindahl, P. et al. Paracrine PDGF-B/PDGF-Rβ signaling controls mesangial cell development in kidney glomeruli. Development 125, 3313–3322 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Abrass, C. K., Berfield, A. K., Ryan, M. C., Carter, W. G. & Hansen, K. M. Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene. Kidney Int. 70, 1062–1071 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Dehbi, M., Ghahremani, M., Lechner, M., Dressler, G. & Pelletier, J. The paired-box transcription factor, PAX2, positively modulates expression of the Wilms' tumor suppressor gene (WT1). Oncogene 13, 447–453 (1996).

    CAS  PubMed  Google Scholar 

  92. Ryan, G., Steele-Perkins, V., Morris, J. F., Rauscher, F. J. 3rd & Dressler, G. R. Repression of Pax-2 by WT1 during normal kidney development. Development 121, 867–875 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Dressler, G. R. et al. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature 362, 65–67 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Wagner, K. D. et al. An inducible mouse model for PAX2-dependent glomerular disease: insights into a complex pathogenesis. Curr. Biol. 16, 793–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Gao, X. et al. Angioblast-mesenchyme induction of early kidney development is mediated by WT1 and VEGFA. Development 132, 5437–5449 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Hanson, J., Gorman, J., Reese, J. & Fraizer, G. Regulation of vascular endothelial growth factor, VEGF, gene promoter by the tumor suppressor, WT1. Front. Biosci. 12, 2279–2290 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Palmer, R. E. et al. WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin. Curr. Biol. 11, 1805–1809 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Wagner, N., Wagner, K. D., Xing, Y., Scholz, H. & Schedl, A. The major podocyte protein nephrin is transcriptionally activated by the Wilms' tumor suppressor WT1. J. Am. Soc. Nephrol. 15, 3044–3051 (2004).

    Article  PubMed  Google Scholar 

  99. Guo, G., Morrison, D. J., Licht, J. D. & Quaggin, S. E. WT1 activates a glomerular-specific enhancer identified from the human nephrin gene. J. Am. Soc. Nephrol. 15, 2851–2856 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, H. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nature Genet. 19, 51–55 (1998).

    Article  PubMed  Google Scholar 

  101. Dreyer, S. D. et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nature Genet. 19, 47–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Suleiman, H. et al. The podocyte-specific inactivation of Lmx1b, Ldb1 and E2a yields new insight into a transcriptional network in podocytes. Dev. Biol. 304, 701–712 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Weizer, A. Z. et al. Determining the incidence of horseshoe kidney from radiographic data at a single institution. J. Urol. 170, 1722–1726 (2003).

    Article  PubMed  Google Scholar 

  104. Levinson, R. S. et al. FOXD1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132, 529–539 (2005). This paper uses Foxd1 knockout animals to demonstrate an important function for the renal capsule in kidney development.

    Article  CAS  PubMed  Google Scholar 

  105. Hammes, A. et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Guo, J. K. et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum. Mol. Genet. 11, 651–659 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Pedersen, A., Skjong, C. & Shawlot, W. Lim1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol. 288, 571–581 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Cai, Y., Brophy, P. D., Levitan, I., Stifani, S. & Dressler, G. R. Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation. EMBO J. 22, 5522–5529 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jain, S., Encinas, M., Johnson, E. M. Jr & Milbrandt, J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 20, 321–333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Challen, G. et al. Temporal and spatial transcriptional programs in murine kidney development. Physiol. Genomics 23, 159–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Schwab, K. et al. Microarray analysis of focal segmental glomerulosclerosis. Am. J. Nephrol. 24, 438–447 (2004).

    Article  PubMed  Google Scholar 

  112. Takemoto, M. et al. Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J. 25, 1160–1174 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Little, M. H. et al. A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr. Patterns 7, 680–699 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank A. Brändli for his valuable comments and for sharing unpublished data. I am also grateful to the members of my laboratory for critically reading this manuscript. The research group of A.S. is supported by grants from the FRM (Fondation pour la Recherche médicale) (France), the European Union (EuReGene, FP6) and the French National Research Agency (ANR, maladies rare).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Axenfeld–Rieger syndrome

BOR syndrome

nail–patella syndrome

papillorenal syndrome

Wilms tumours

VUR

FURTHER INFORMATION

Andreas Schedl's homepage

EuReGene

Gene Paint

GenitoUrinary Development Molecular Anatomy Project

Kidney Development Database

MRC Mammalian Genetics Unit

National Kidney Foundation

Glossary

Nephron

The basic functional unit of the kidney, consisting of the glomerulus, proximal tubule, Henle's loop and distal tubule. Nephrons are connected to the ureter-derived collecting ducts.

Ciliary defects

The primary cilium is a microtubular organelle that appears to have an important function as a cellular mechanosensor. Multiple proteins that are disrupted in polycystic kidney disease seem to localize to the the primary cilium, suggesting that polycystic kidney disease (PKD) is the result of defects in this organelle.

Cortex

The outer portion of the kidney that contains the glomeruli and the proximal and distal tubules.

Medulla

The innermost part of the kidney, made up of the Henle's loops of the nephrons and blood vessels.

Primary hypertension

As opposed to secondary hypertension, primary (essential) hypertension is defined as high blood pressure for which no particular cause is known.

Glomerulus

The filtrating unit of the nephron that consists of vascular podocytes, endothelial and mesangial cells. Filtration occurs at the interface of fenestrated endothelial cells and glomerular foot processes through a specialized basement membrane. Also called the renal corpuscule.

Proximal tubule

A nephron segment located between the glomerulus and the Henle's loop and characterized by a brush-border that consists of densely packed microvilli. The proximal tubule is responsible for passive and active resorption of solutes from the pre-urine.

Henle's loop

The intermediate portion of the nephron (between the proximal and distal tubule) that functions in the resorption of water and ions from pre-urine.

Distal tubule

The last nephron segment located after Henle's loop and connected to the collecting ducts. The distal tubule has an important role in the regulation of pH and the salt concentrations of calcium, potassium and sodium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schedl, A. Renal abnormalities and their developmental origin. Nat Rev Genet 8, 791–802 (2007). https://doi.org/10.1038/nrg2205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing