Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The mouse as a model for human biology: a resource guide for complex trait analysis

Key Points

  • Mice and humans share 99% of their genes, and so share common diseases.

  • Most common human diseases are complex, or polygenic.

  • Rapidly growing genomic resources in the mouse facilitate complex trait analysis

  • Extensive phenotypic differences exist between inbred strains of mice, as catalogued by the Mouse Phenome Project, Eumorphia Empress and the German Mouse Clinic.

  • Together, mouse genome and phenome advances have provided the resources that are required to rapidly and cost-effectively identify QTLs and narrow QTL confidence intervals.

  • Establishment of the Collaborative Cross promises to add tremendously to our ability to identify genes that underlie QTLs in the future.

Abstract

The mouse has been a powerful force in elucidating the genetic basis of human physiology and pathophysiology. From its beginnings as the model organism for cancer research and transplantation biology to the present, when dissection of the genetic basis of complex disease is at the forefront of genomics research, an enormous and remarkable mouse resource infrastructure has accumulated. This review summarizes those resources and provides practical guidelines for their use, particularly in the analysis of quantitative traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Derivatives of inbred strains.
Figure 2: Search results for Akp2 in the Mouse Genome Informatics (MGI) Mouse GBrowse.
Figure 3: Identification of QTL and narrowing QTL intervals.
Figure 4: Strategies for narrowing QTL confidence intervals.
Figure 5: The Collaborative Cross.

Similar content being viewed by others

References

  1. Little, C. C. US science wars against an unknown enemy: cancer. Life 2, 11–17 (1937).

    Google Scholar 

  2. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002). A description and analysis of the initial mouse genome sequence.

    Article  CAS  PubMed  Google Scholar 

  3. Paigen, K. One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics 163, 1–7 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Paigen, K. One hundred years of mouse genetics: an intellectual history. II. The molecular revolution (1981–2002). Genetics 163, 1227–1235 (2003). References 3 and 4 give an insightful history of the past 100 years of mouse genetics.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Doolittle, D. P., Davisson, M. T., Guidi, J. N. & Green, M. C. in Genetic Variants and Strains of the Laboratory Mouse Vol. 1 (eds Lyon, M. F., Rastan, S. & Brown, S. D. M.) 817–854 (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  6. Lee, D. & Threadgill, D. W. Investigating gene function using mouse models. Curr. Opin. Genet. Dev. 14, 246–252 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. Dietrich, W. F. et al. Genetic identification of Mom-1, a major modifer locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Abiola, O. et al. The nature and identification of quantitative trait loci: a community's view. Nature Rev. Genet. 4, 911–916 (2003).

    PubMed  Google Scholar 

  9. Bogue, M. A. & Grubb, S. C. The mouse phenome project. Genetica 122, 71–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Grubb, S. C., Churchill, G. A. & Bogue, M. A. A collaborative database of inbred mouse strain characteristics. Bioinformatics 20, 2857–2859 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Paigen, K. & Eppig, J. T. A mouse phenome project. Mamm. Genome 11, 715–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Brown, S. D., Chambon, P. & de Angelis, M. H. EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nature Genet. 37, 1155 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Silver, L. M. Mouse Genetics 362 (Oxford Univ. Press, New York, 1995). The standard text on mouse genetics, introducing the history of the laboratory mouse, breeding strategies and other widely used methods. Available free online (see Further information).

    Google Scholar 

  14. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–495 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Peters, L. L. et al. Purkinje cell degeneration associated with erythroid ankyrin deficiency in nb/nb mice. J. Cell Biol. 144, 1233–1241 (1991).

    Article  Google Scholar 

  18. Bennett, V. Of mice and men: the mice were right. J. Clin. Invest. 95, 921–922 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McCann, S. R. & Jacob, H. S. Spinal cord disease in hereditary spherocytosis: report of two cases with a hypothesized common mechanism for neurologic and red cell abnormalities. Blood 48, 259–263 (1976).

    CAS  PubMed  Google Scholar 

  20. Chan, W., Kordeli, E. & Bennett, V. 440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons. J. Cell Biol. 123, 1463–1473 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Ohgami, R. S. et al. nm1054: a spontaneous, recessive, hypochromic, microcytic anemia mutation in the mouse. Blood 106, 3625–3631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohgami, R. S. et al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nature Genet. 37, 1264–1269 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Beier, D. R. ENU mutagenesis: a work in progress. Physiol. Genomics 11, 111–113 (2002).

    Article  PubMed  Google Scholar 

  24. Brown, S. D. M. Mouse models of genetic disease: new approaches, new paradigms. J. Inherited Metab. Dis. 21, 532–539 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Clark, A. T. et al. Implementing large-scale ENU mutagenesis screens in North America. Genetica 122, 51–64 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cordes, S. P. N-ethyl-N-nitrosourea mutagenesis: boarding the mouse mutant express. Microbiol. Mol. Biol. Rev. 69, 426–439 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    Article  CAS  Google Scholar 

  28. Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Nadeau, J. H. et al. Sequence interpretation. Functional annotation of mouse genome sequences. Science 291, 1251–1255 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. O'Brien, T. P. in Systematic Evaluation of the Mouse Eye (ed. Smith, R. S.) 93–108 (CRC, New York, 2002).

    Google Scholar 

  31. Bailey, D. W. Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11, 325–327 (1971).

    Article  CAS  PubMed  Google Scholar 

  32. Swank, R. T. & Bailey, D. W. Recombinant inbred lines: value in the genetic analysis of biochemical variants. Science 181, 1249–1252 (1973).

    Article  CAS  PubMed  Google Scholar 

  33. Dietrich, W. et al. in Genomic Maps, Nonhuman Vertebrates Book 4 (ed. O'Brien, S. J.) 4110–4142 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993).

    Google Scholar 

  34. Peirce, J. L., Lu, L., Gu, J., Silver, L. M. & Williams, R. W. A new set of Bxd recombinant inbred lines from advanced intercross populations in mice. BMC Genet. 5, 7 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Williams, R. W. et al. Genetic structure of the LXS panel of recombinant inbred mouse strains: a powerful resource for complex trait analysis. Mamm. Genome 15, 637–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Darvasi, A. & Soller, M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 1199–1207 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Flint, J., Valdar, W., Shifman, S. & Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nature Rev. Genet. 6, 271–286 (2005). An up-to-date review on methods for mapping quantitative traits in animals models.

    Article  CAS  PubMed  Google Scholar 

  38. Valdar, W. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genet. 38, 879–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Flaherty, L. in The Mouse in Biomedical Research; History, Genetics, and Wild Mice (eds Foster, H. L., Small, J. D. & Fox, J. G.) 215–222 (Academic, New York, 1981).

    Google Scholar 

  40. Markel, P. et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nature Genet. 17, 280–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Davis, R. C. et al. A genome-wide set of congenic mouse strains derived from DBA/2J on a C57BL/6J background. Genomics 86, 259–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Iakoubova, O. A. et al. Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genomics 74, 89–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Nadeau, J. H., Singer, J. B., Matin, A. & Lander, E. S. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Bevova, M. R., Aulchenko, Y. S., Aksu, S., Renne, U. & Brockmann, G. A. Chromosome-wise dissection of the genome of the extremely big mouse line DU6i. Genetics 172, 401–410 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Belknap, J. K. Chromosome substitution strains: some quantitative considerations for genome scans and fine mapping. Mamm. Genome 14, 723–732 (2003).

    Article  PubMed  Google Scholar 

  46. Jaenisch, R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc. Natl Acad. Sci. USA 73, 1260–1264 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doetschman, T. et al. Targetted correction of a mutant Hprt gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Kwan, K. M. Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 32, 49–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Austin, C. P. et al. The knockout mouse project. Nature Genet. 36, 921–924 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. O'Brien, T. & Woychik, R. Our small relative. Nature Genet. 33, 3–4 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Dipetrillo, K., Wang, X., Stylianou, I. M. & Paigen, B. Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet. 21, 683–692 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kanehisa, M. & Bork, P. Bioinformatics in the post-sequence era. Nature Genet. 33, S305–S310 (2003).

    Article  CAS  Google Scholar 

  54. Baldarelli, R. M. et al. Connecting sequence and biology in the laboratory mouse. Genome Res. 13, 1505–1519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karp, P. D., Krummenacker, M., Paley, S. & Wagg, J. Integrated pathway–genome databases and their role in drug discovery. Trends Biotechnol. 17, 275–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Hubbard, T. et al. The Ensembl genome database project. Nucleic Acids Res. 30, 38–41 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D588 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Karolchik, D. et al. The UCSC TABLE Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bult, C. J. et al. The Mouse Genome Database (MGD): integrating biology with the genome. Nucleic Acids Res. 32, D476–D481 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eppig, J. T. et al. The Mouse Genome Database (MGD): from genes to mice — a community resource for mouse biology. Nucleic Acids Res. 33, D471–D475 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ashurst, J. L. et al. The Vertebrate Genome Annotation (VEGA) database. Nucleic Acids Res. 33, D459–D465 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Bogue, M. Mouse Phenome Project: understanding human biology through mouse genetics and genomics. J. Appl. Physiol. 95, 1335–1337 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Peters, L. L. et al. Large scale, high throughput screening for coagulation and hematologic phenotypes in mice. Physiol. Gen. 11, 185–193 (2002).

    Article  CAS  Google Scholar 

  65. McClurg, P., Pletcher, M. T., Wiltshire, T. & Su, A. I. Comparative analysis of haplotype association mapping algorithms. BMC Bioinformatics 7, 61 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pletcher, M. T. et al. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2, 2159–2169 (2004).

    Article  CAS  Google Scholar 

  67. Gailus-Durner, V. et al. Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nature Methods 2, 403–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Schneider, I. et al. Systematic, standardized and comprehensive neurological phenotyping of inbred mice strains in the German Mouse Clinic. J. Neurosci. Methods 157, 82–90 (2006).

    Article  PubMed  Google Scholar 

  69. Rowe, L. B. et al. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm. Genome 5, 253–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Moran, J. L. et al. Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Res. 16, 436–440 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Petkov, P. M. et al. An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res. 14, 1806–1811 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Petkov, P. M. et al. Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics. 83, 902–911 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Pennacchio, L. A. Insights from human/mouse genome comparisons. Mamm. Genome 14, 429–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Sugiyama, F. et al. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 71, 70–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, X., Ishimori, N., Korstanje, R., Rollins, J. & Paigen, B. Identifying novel genes for atherosclerosis through mouse–human comparative genetics. Am. J. Hum. Genet. 77, 1–15 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klein, R. F. Genetic regulation of bone mineral density in mice. J. Musculoskelet. Neuronal Interact. 2, 232–236 (2002).

    CAS  PubMed  Google Scholar 

  77. Korstanje, R. & DiPetrillo, K. Unraveling the genetics of chronic kidney disease using animal models. Am. J. Physiol. Renal Physiol. 287, F347–F352 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, X. & Paigen, B. Genetics of variation in HDL cholesterol in humans and mice. Circ. Res. 96, 27–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, X. & Paigen, B. Genome-wide search for new genes controlling plasma lipid concentrations in mice and humans. Curr. Opin. Lipidol. 16, 127–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, X. et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nature Genet. 37, 365–372 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Hillebrandt, S. et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nature Genet. 37, 835–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

  83. Korstanje, R. & Paigen, B. From QTL to gene: the harvest begins. Nature Genet. 31, 235–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Wade, C. M. et al. The mosaic structure of variation in the laboratory mouse genome. Nature 420, 574–578 (2002). A description of the mosaic structure of the mouse genome.

    Article  CAS  PubMed  Google Scholar 

  85. Frazer, K. A. et al. Segmental phylogenetic relationships of inbred mouse strains revealed by fine-scale analysis of sequence variation across 4.6 Mb of mouse genome. Genome Res. 14, 1493–1500 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wiltshire, T. et al. Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc. Natl Acad. Sci. USA 100, 3380–3385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sen, S. & Churchill, G. A. A statistical framework for quantitative trait mapping. Genetics 159, 371–387 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Peters, L. L. et al. Identification of quantitative trait loci that modify the severity of hereditary spherocytosis in wan, a new mouse model of band-3 deficiency. Blood 103, 3233–3240 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Ikeda, A. et al. Genetic modification of hearing in tubby mice: evidence for the existence of a major gene (Moth1) which protects tubby mice from hearing loss. Hum. Mol. Genet. 8, 1761–1767 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Churchill, G. A. & Doerge, R. W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994). This paper introduced permutation analysis into the field of quantitative genetics.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lander, E. S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989). A classic paper that introduced the modern statistical approach to quantitative trait analysis. A challenging but essential reference.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Peters, L. L. et al. Quantitative trait loci for baseline erythroid traits. Mamm. Genome 17, 298–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Peters, L. L. et al. Quantitative trait loci for baseline white blood cell count, platelet count, and mean platelet volume. Mamm. Genome 16, 749–763 (2005).

    Article  PubMed  Google Scholar 

  94. Bath, P., Algert, C., Chapman, N. & Neal, B. Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. Stroke 35, 622–626 (2004).

    Article  PubMed  Google Scholar 

  95. Castro, O. et al. The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 84, 643–649 (1994).

    CAS  PubMed  Google Scholar 

  96. de Labry, L. O., Campion, E. W., Glynn, R. J. & Vokonas, P. S. White blood cell count as a predictor of mortality: results over 18 years from the Normative Aging Study. J. Clin. Epidemiol. 43, 153–157 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Martin, J. F., Bath, P. M. & Burr, M. L. Mean platelet volume and myocardial infarction. Lancet 339, 1000–1001 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Martin, J. F., Bath, P. M. & Burr, M. L. Influence of platelet size on outcome after myocardial infarction. Lancet 338, 1409–1411 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Miller, S. T. et al. Prediction of adverse outcomes in children with sickle cell disease. N. Engl. J. Med. 342, 83–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Platt, O. S. The acute chest syndrome of sickle cell disease. N. Engl. J. Med. 342, 1904–1907 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Platt, O. S. et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med. 330, 1639–1644 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Platt, O. S. et al. Pain in sickle cell disease. Rates and risk factors. N. Engl. J. Med. 325, 11–16 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Darvasi, A. & Soller, M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav. Genet. 27, 125–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Zimdahl, H., Kreitler, T., Gosele, C., Ganten, D. & Hubner, N. Conserved synteny in rat and mouse for a blood pressure QTL on human chromosome 17. Hypertension 39, 1050–1052 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Vitt, U. et al. Identification of candidate disease genes by EST alignments, synteny, and expression and verification of Ensembl genes on rat chromosome 1q43–54. Genome Res. 14, 640–650 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Parsons, C. A. et al. Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22. Hum. Mol. Genet. 14, 3141–3148 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Li, R., Lyons, M. A., Wittenburg, H., Paigen, B. & Churchill, G. A. Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping. Genetics 169, 1699–1709 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. DiPetrillo, K. et al. Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice. Physiol. Genomics 17, 215–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Ishimori, N. et al. Quantitative trait loci that determine BMD in C57BL/6J and 129S1/SvImJ inbred mice. J. Bone Miner. Res. 21, 105–112 (2006).

    Article  PubMed  Google Scholar 

  110. Wang, X., Korstanje, R., Higgins, D. & Paigen, B. Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res. 14, 1767–1772 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. de Botton, S. et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100, 1310–1317 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Hartwig, J. & Italiano, J. Jr. The birth of the platelet. J. Thromb. Haemost. 1, 1580–1586 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Italiano, J. E. & Shivdasani, R. A. Megakaryocytes and beyond: the birth of platelets. J. Thromb. Haemost. 1, 1174–1182 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Lecine, P. et al. Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood 92, 1608–1616 (1998).

    CAS  PubMed  Google Scholar 

  115. Lecine, P., Italiano, J. E., Kim, S. W., Villeval, J. L. & Shivdasani, R. A. Hematopoietic-specific β1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood 96, 1366–1373 (2000).

    CAS  PubMed  Google Scholar 

  116. Tiwari, S. et al. A role for Rab27b in NF-E2-dependent pathways of platelet formation. Blood 102, 3970–3979 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Levin, J. & Bessman, J. D. The inverse relation between platelet volume and platelet number. Abnormalities in hematologic disease and evidence that platelet size does not correlate with platelet age. J. Lab. Clin. Med. 101, 295–307 (1983).

    CAS  PubMed  Google Scholar 

  118. Rosa, G. J., de Leon, N. & Rosa, A. A review of microarray experimental design strategies for genetical genomics studies. Physiol. Genomics 19 Sep 2006 [epub ahead of print].

  119. Lum, P. Y. et al. Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. J. Neurochem. 97, S50–S62 (2006).

    Article  CAS  Google Scholar 

  120. Doss, S., Schadt, E. E., Drake, T. A. & Lusis, A. J. Cis-acting expression quantitative trait loci in mice. Genome Res. 15, 681–691 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Drake, T. A., Schadt, E. E. & Lusis, A. J. Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mamm. Genome 17, 466–479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yaguchi, H., Togawa, K., Moritani, M. & Itakura, M. Identification of candidate genes in the type 2 diabetes modifier locus using expression QTL. Genomics 85, 591–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Valdar, W., Flint, J. & Mott, R. Simulating the Collaborative Cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172, 1783–1797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genet. 36, 1133–1137 (2004). This paper describes the design and objective of the Collaborative Cross.

    Article  CAS  PubMed  Google Scholar 

  125. Grupe, A. et al. In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918 (2001). The first description of in silico mapping of complex traits

    Article  CAS  PubMed  Google Scholar 

  126. Smith, J. D. et al. In silico quantitative trait locus map for atherosclerosis susceptibility in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 117–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Li, R. et al. Structural model analysis of multiple quantitative traits. PLoS Genet. 2, e114 (2006). A breakthrough paper describing the use of structural modelling to identify cause-and-effect relationships among genes and phenotypes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Wang, X. et al. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Res. 13, 1654–1664 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the US National Institute of General Medical Sciences and the US National Heart, Lung and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luanne L. Peters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Deltagen

Deltagen and Lexicon Knockout Mice and Phenotypic Data

Eumorphia EMPReSS

European Conditional Mouse Mutagenesis Program

Genome Variation Server

Genomics Institute of the Novartis Research Foundation

German Mouse Clinic

International HapMap Project

Knockout Mouse Project

Lee Silver's Mouse Genetics

Lexicon Genetics

North American Conditional Mouse Mutagenesis Project

Perlegen Sciences

PhysGen

QTL Archive

Roche

Sanger Institute

The Institute for Genome Research

The Jackson Laboratory

Trans-NIH Mouse Initiatives

Glossary

Congenic Strain

A strain that is produced by repeated backcrossing (ten generations) to an inbred strain, with selection for heterozygosity at each generation for a specific locus in the donor strain.

Coisogenic strain

Strains of mice that differ at a single locus. When a spontaneous mutation occurs in an inbred strain, the mutant and the non-mutant mice are coisogenic.

Purkinje cell

Large neurons with highly branched dendritic trees; Purkinje cells provide the only neural output from the cerebellum.

Myelination

The process of the formation of the myelin sheaths of axons.

Short sequence length polymorphic markers

Tandem repeats, usually of 2–3 bp; the number of repeats varies (is polymorphic) depending on the strain.

LOD score

The 'Logarithm of odds' score; the base-10 logarithm of a likelihood ratio (the odds), which is often used in the context of genetic mapping to indicate significance thresholds.

Synteny

Genes that occur in the same order in different species; the chromosomes of the species are then said to be syntenic in those regions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, L., Robledo, R., Bult, C. et al. The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8, 58–69 (2007). https://doi.org/10.1038/nrg2025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing