Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis

Key Points

  • Analysis of the genome sequence of Arabidopsis thaliana, as well as that of all other organisms for which whole-genome sequences are available, has revealed the existence of a surprisingly large number of genes of unknown function. Genomic approaches have been developed to investigate different aspects of gene function, including the location and timing of gene expression, and whether the corresponding protein products interact to form functional complexes. In most cases, however, such information is still insufficient to conclusively assign a gene to a specific biological process.

  • Mutant analysis has been extensively and fruitfully used to determine gene function. Two basic strategies, forward and reverse genetics, are usually used.

  • In forward genetics, large populations of randomly mutagenized individuals are screened for phenotypic alterations in a particular biological process. Although recent DNA array-based mapping approaches are expected to hasten map-based cloning of genes, the effort required to identify the mutation that underlies a particular phenotype of interest can be significant. Additionally, the identification of genes that correspond to large numbers of mutations is more or less a serial process.

  • By contrast, in the reverse genetic approach, a gene or genes of interest are selected on the basis of genotypic information, such as sequence homology to a gene of known function or the particular pattern of expression. Mutations in these genes are obtained simply using DNA sequence-based computer searches of mutation databases, and the phenotypes of the mutant lines are then examined.

  • Various experimental procedures have been developed to generate mutations in the A. thaliana genome. Different mutagens (chemical, physical and biological agents) produce specific types of lesion and vary in their efficiency and degree of randomness of mutations. The relative ease by which transposons and Agrobacterium-mediated T-DNA can be used to create sequence-tagged insertion mutations in plant genomes has made these the mutagens of choice among reverse genetic strategies. Nevertheless, insertional mutagenesis has clear limitations, and complementary gene-directed mutagenesis methodologies are often used in parallel.

  • Several gene-directed mutagenesis strategies have been developed in A. thaliana. Targeted gene replacement by homologous recombination is the 'holy grail' of reverse genetic approaches. So far, the low efficiency of this methodology in plants has limited its use. However, recent studies have shown that substantially increased rates of recombination might be possible.

  • The low success rate of current gene-replacement techniques has prompted the development of alternative strategies such as gene silencing, which relies on the alteration of the gene activity rather than on changes in the gene sequence. Directed genome-sequence alterations that are based on the DNA-recognition properties of engineered zinc-finger proteins could also represent a viable alternative.

  • In the near future, parallel functional analysis of all genes in the A. thaliana genome will become possible with the help of one or more of the methodologies described in this review. Utilization of genome-wide collections of gene-indexed mutants in traditional forward genetic screens promises to accelerate the discovery of gene functions in A. thaliana to unprecedented rates.

Abstract

Genome sequencing, in combination with various computational and empirical approaches to sequence annotation, has made possible the identification of more than 30,000 genes in Arabidopsis thaliana. Increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of these genes gives rise to a complex organism. The combination of classical forward genetics with recently developed genome-wide, gene-indexed mutant collections is beginning to revolutionize the way in which gene functions are studied in plants. High-throughput screens using these mutant populations should provide a means to analyse plant gene functions — the phenome — on a genomic scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From genome sequence to gene function.
Figure 2: Generation of genetic diversity.
Figure 3: Systematic reverse genetics.

Similar content being viewed by others

References

  1. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  2. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846 (2003).

    CAS  PubMed  Google Scholar 

  3. Haas, B. J. et al. Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol. 3, 7 (2005).

    PubMed  PubMed Central  Google Scholar 

  4. Mathe, C., Sagot, M.-F., Schiex, T. & Rouze, P. Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 30, 4103–4117 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, M. Q. Computational prediction of eukaryotic protein-coding genes. Nature Rev. Genet. 3, 698–709 (2002).

    CAS  PubMed  Google Scholar 

  6. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Seki, M. et al. Functional annotation of a full-length Arabidopsis cDNA collection. Science 296, 141–145 (2002).

    PubMed  Google Scholar 

  8. Schwab, R. et al. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8, 517–527 (2005).

    CAS  PubMed  Google Scholar 

  9. Meyers, B. C. et al. Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol. 135, 801–813 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fizames, C. et al. The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant Physiol. 134, 67–80 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Robinson, S. J., Cram, D. J., Lewis, C. T. & Parkin, I. A. Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis. Plant Physiol. 136, 3223–3233 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Snyder, M. & Gerstein, M. Genomics. Defining genes in the genomics era. Science 300, 258–260 (2003).

    CAS  PubMed  Google Scholar 

  13. Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

    CAS  PubMed  Google Scholar 

  14. Yates, J. R. 3rd. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33, 297–316 (2004).

    CAS  PubMed  Google Scholar 

  15. Steinmetz, L. M. & Davis, R. W. Maximizing the potential of functional genomics. Nature Rev. Genet. 5, 190–201 (2004).

    CAS  PubMed  Google Scholar 

  16. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  17. Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D. & Koornneef, M. Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662,679–682 (1998).

    Google Scholar 

  18. Peters, J. L., Cnudde, F. & Gerats, T. Forward genetics and map-based cloning approaches. Trends Plant Sci. 8, 484–491 (2003).

    CAS  PubMed  Google Scholar 

  19. Jander, G. et al. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129, 440–450 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Azpiroz-Leehan, R. & Feldmann, K. A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13, 152–156 (1997).

    CAS  PubMed  Google Scholar 

  21. Feschotte, C., Jiang, N. & Wessler, S. R. Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3, 329–341 (2002).

    CAS  PubMed  Google Scholar 

  22. Henikoff, S., Till, B. J. & Comai, L. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630–636 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, X. & Zhang, Y. Reverse genetics by fast neutron mutagenesis in higher plants. Funct. Integr. Genomics 2, 254–258 (2002).

    CAS  PubMed  Google Scholar 

  24. McGinnis, K. et al. Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol. 392, 1–24 (2005).

    CAS  PubMed  Google Scholar 

  25. Feldmann, K. A., Malmberg, R. J. & Dean, C. in Arabidopsis (eds Meyerowitz, E. M. & Somerville, C. R.) 137–172 (Cold Spring Harbor Laboratory Press, New York, 1994).

    Google Scholar 

  26. Shikazono, N. et al. Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J. Exp. Bot. 56, 587–596 (2005).

    CAS  PubMed  Google Scholar 

  27. Sun, T.-P., Goodman, H. M. & Ausubel, F. M. Cloning the Arabidopsis ga1 locus by genomic subtraction. Plant Cell 4, 119–128 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gong, J. M. et al. Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 101, 15404–15409 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hazen, S. P. et al. Rapid array mapping of circadian clock and developmental mutations in Arabidopsis. Plant Physiol. 138, 990–997 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003). The authors describe the generation and analysis of the largest sequence-indexed mutant collection in A. thaliana covering >75% of the genes in the genome.

    PubMed  Google Scholar 

  31. Till, B. J. et al. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13, 524–530 (2003). This paper talks about the methodology and results of a large TILLING project in A. thaliana in which mutations for more than 100 genes were identified.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Guzman, P. & Ecker, J. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513–523 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Greene, E. A. et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeted screening for induced mutations. Nature Biotechnol. 18, 455–457 (2000).

    CAS  Google Scholar 

  35. Comai, L. & Henikoff, S. TILLING: practical single-nucleotide mutation discovery. Plant J. 45, 684–694 (2006).

    CAS  PubMed  Google Scholar 

  36. Faham, M. et al. Multiplexed variation scanning for 1,000 amplicons in hundreds of patients using mismatch repair detection (MRD) on tag arrays. Proc. Natl Acad. Sci. USA 102, 14717–14722 (2005). A combination of bacterial-based enrichment for polymorphisms and microarray hybridization were used to scan for the presence of sequence variants. The possible application of this strategy at a genome-scale is discussed.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Parinov, S. & Sundaresan, V. Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotechnol. 11, 157–161 (2000).

    CAS  PubMed  Google Scholar 

  38. Weigel, D. et al. Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013 (2000). Initial description of an activation tagging collection of mutants and its use in A. thaliana are given.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Waterhouse, P. M. & Helliwell, C. A. Exploring plant genomes by RNA-induced gene silencing. Nature Rev. Genet. 4, 29–38 (2003).

    CAS  PubMed  Google Scholar 

  40. Gelvin, S. B. The introduction and expression of transgenes in plants. Curr. Opin. Biotechnol. 9, 227–232 (1998).

    CAS  PubMed  Google Scholar 

  41. Tzfira, T., Li, J., Lacroix, B. & Citovsky, V. Agrobacterium T-DNA integration: molecules and models. Trends Genet. 20, 375–383 (2004).

    CAS  PubMed  Google Scholar 

  42. Zambryski, P. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 465–490 (1992).

    CAS  Google Scholar 

  43. Broothaerts, W. et al. Gene transfer to plants by diverse species of bacteria. Nature 433, 629–633 (2005).

    CAS  PubMed  Google Scholar 

  44. Robertson, D. VIGS vectors for gene silencing: many targets, many tools. Annu. Rev. Plant Biol. 55, 495–519 (2004).

    CAS  PubMed  Google Scholar 

  45. Lorence, A. & Verpoorte, R. Gene transfer and expression in plants. Methods Mol. Biol. 267, 329–350 (2004).

    CAS  PubMed  Google Scholar 

  46. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998). A highly efficient and extremely simple experimental procedure for Agrobacterium -mediated A. thaliana transformation is presented in this paper.

    CAS  PubMed  Google Scholar 

  47. Krysan, P. J., Young, J. C. & Sussman, M. R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sessions, A. et al. A high-throughput Arabidopsis reverse genetics system. Plant Cell 14, 2985–2994 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Springer, P. S. Gene traps: tools for plant development and genomics. Plant Cell 12, 1007–1020 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakayama, N. et al. Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens. Plant Cell 17, 2486–2506 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Campisi, L. et al. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 17, 699–707 (1999).

    CAS  PubMed  Google Scholar 

  52. Lindsey, K., Topping, J. F., Muskett, P. R., Wei, W. & Horne, K. L. Dissecting embryonic and seedling morphogenesis in Arabidopsis by promoter trap insertional mutagenesis. Symp. Soc. Exp. Biol. 51, 1–10 (1998).

    CAS  PubMed  Google Scholar 

  53. Alvarado, M. C. et al. Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. Plant Physiol. 134, 18–27 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Michael, T. P. et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049–1053 (2003).

    CAS  PubMed  Google Scholar 

  55. Kakimoto, T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985 (1996).

    CAS  PubMed  Google Scholar 

  56. Higuchi, M. et al. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl Acad. Sci. USA 101, 8821–8826 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao, Y. et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309 (2001).

    CAS  PubMed  Google Scholar 

  58. Nakazawa, M. et al. Activation tagging, a novel tool to dissect the functions of a gene family. Plant J. 34, 741–750 (2003).

    CAS  PubMed  Google Scholar 

  59. Ichikawa, T. et al. Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J. 36, 421–429 (2003).

    CAS  PubMed  Google Scholar 

  60. Kardailsky, I. et al. Activation tagging of the floral inducer FT. Science 286, 1962–1965 (1999).

    CAS  PubMed  Google Scholar 

  61. Hirschi, K. D. Insertional mutants: a foundation for assessing gene function. Trends Plant Sci. 8, 205–207 (2003).

    CAS  PubMed  Google Scholar 

  62. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).

    CAS  PubMed  Google Scholar 

  63. Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002).

    CAS  PubMed  Google Scholar 

  64. Smith, D. et al. Characterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis. Plant J. 10, 721–732 (1996).

    CAS  PubMed  Google Scholar 

  65. Sundaresan, V. et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810 (1995).

    CAS  PubMed  Google Scholar 

  66. Tissier, A. F. et al. Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11, 1841–1852 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Parinov, S. et al. Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11, 2263–2270 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, C. et al. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129, 2401–2409 (2002).

    CAS  PubMed  Google Scholar 

  69. Bancroft, I., Jones, J. D. & Dean, C. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell 5, 631–638 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hanzawa, Y. et al. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J. 19, 4248–4256 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jenik, P. D. & Irish, V. F. The Arabidopsis floral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development. Development 128, 13–23 (2001).

    CAS  PubMed  Google Scholar 

  72. Marsch-Martinez, N., Greco, R., Van Arkel, G., Herrera-Estrella, L. & Pereira, A. Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol. 129, 1544–1556 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, S. et al. Resources for targeted insertional and deletional mutagenesis in Arabidopsis. Plant Mol. Biol. 53, 133–150 (2003). This work describes a new tool that combines T-DNA mutagenesis, local movement of a transposon, and loxP -based recombination to produce deletions of selected genome regions.

    CAS  PubMed  Google Scholar 

  74. Machida, C. et al. Characterization of the transposition pattern of the Ac element in Arabidopsis thaliana using endonuclease I-SceI. Proc. Natl Acad. Sci. USA 94, 8675–8680 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Beetham, P. R., Kipp, P. B., Sawycky, X. L., Arntzen, C. J. & May, G. D. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl Acad. Sci. USA 96, 8774–8778 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kempin, S. A. et al. Targeted disruption in Arabidopsis. Nature 389, 802–803 (1997).

    CAS  PubMed  Google Scholar 

  77. Adams, M. D. & Sekelsky, J. J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nature Rev. Genet. 3, 189–198 (2002).

    CAS  PubMed  Google Scholar 

  78. Terada, R., Urawa, H., Inagaki, Y., Tsugane, K. & Iida, S. Efficient gene targeting by homologous recombination in rice. Nature Biotechnol. 20, 1030–1034 (2002).

    CAS  Google Scholar 

  79. Hanin, M. & Paszkowski, J. Plant genome modification by homologous recombination. Curr. Opin. Plant Biol. 6, 157–162 (2003).

    CAS  PubMed  Google Scholar 

  80. Shaked, H., Melamed-Bessudo, C. & Levy, A. A. High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc. Natl Acad. Sci. USA 102, 12265–12269 (2005). The ectopic expression of the yeast RAD54 gene in Arabidopsis plants results in a significant improvement in the rates of homologous recombination. Highly selective methods are still needed to identify the true recombination events.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lloyd, A., Plaisier, C. L., Carroll, D. & Drews, G. N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl Acad. Sci. USA 102, 2232–2237 (2005). A novel nuclease has been engineered that can be used to generate mutations in a selected sequence in the A. thaliana genome. Stable mutants can be obtained.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N. & Stuitje, A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2, 291–299 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003).

    CAS  Google Scholar 

  85. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  86. Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006). This paper establishes the basis for the use of artificial microRNAs as a new tool to study gene function in plants. The cell-autonomous properties of the miRNAs and the ability to knock down simultaneously and specifically several gene family members are among the main advantages of this new approach.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Phelps, C. B. & Brand, A. H. Ectopic gene expression in Drosophila using GAL4 system. Methods 14, 367–379 (1998).

    CAS  PubMed  Google Scholar 

  88. Kiegle, E., Moore, C. A., Haseloff, J., Tester, M. A. & Knight, M. R. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 23, 267–278 (2000).

    CAS  PubMed  Google Scholar 

  89. Bougourd, S., Marrison, J. & Haseloff, J. Technical advance: an aniline blue staining procedure for confocal microscopy and 3D imaging of normal and perturbed cellular phenotypes in mature Arabidopsis embryos. Plant J. 24, 543–550 (2000).

    CAS  PubMed  Google Scholar 

  90. De Wilde, C. et al. Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol. Biol. 43, 347–359 (2000).

    CAS  PubMed  Google Scholar 

  91. Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wright, D. A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705 (2005). This work illustrates how the DNA breakage that is induced by a zinc-finger nuclease in a specific sequence in the genome can improve the efficiency of homologous recombination at that locus.

    CAS  PubMed  Google Scholar 

  93. LeClere, S. & Bartel, B. A library of Arabidopsis 35S-cDNA lines for identifying novel mutants. Plant Mol. Biol. 46, 695–703 (2001).

    CAS  PubMed  Google Scholar 

  94. Lu, C., Fulda, M., Wallis, J. G. & Browse, J. A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. Plant J. 45, 847–856 (2006).

    CAS  PubMed  Google Scholar 

  95. Meyerowitz, E. M. & Somerville, C. R. Arabidopsis (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994).

    Google Scholar 

  96. Page, D. R. & Grossniklaus, U. The art and design of genetic screens: Arabidopsis thaliana. Nature Rev. Genet. 3, 124–136 (2002).

    CAS  PubMed  Google Scholar 

  97. Susek, R. E., Ausubel, F. M. & Chory, J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74, 787–799 (1993).

    CAS  PubMed  Google Scholar 

  98. Wang, K. L., Li, H. & Ecker, J. R. Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–S151 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N. H. & Kay, S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163 (1995).

    CAS  PubMed  Google Scholar 

  100. Prigge, M. J. et al. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17, 61–76 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. To, J. P. et al. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16, 658–671 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Okushima, Y. et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17, 444–463 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ostergaard, L. & Yanofsky, M. F. Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J. 39, 682–696 (2004).

    CAS  PubMed  Google Scholar 

  104. Oleykowski, C. A., Bronson Mullins, C. R., Godwin, A. K. & Yeung, A. T. Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 4597–4602 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stemple, D. L. TILLING — a high-throughput harvest for functional genomics. Nature Rev. Genet. 5, 145–150 (2004).

    CAS  PubMed  Google Scholar 

  106. Zhang, Y., Tessaro, M. J., Lassner, M. & Li, X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15, 2647–2653 (2003). This paper describes one of the few published examples in which the Deleteagene technology has been successfully applied.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, X. & Zhang, Y. Reverse genetics by fast neutron mutagenesis in higher plants. Funct. Integr. Genomics 2, 254–258 (2002).

    CAS  PubMed  Google Scholar 

  108. McKinney, E. C. et al. Sequence-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2-1 and act4-1. Plant J. 8, 613–22 (1995).

    CAS  PubMed  Google Scholar 

  109. Krysan, P. J. et al. Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis. OMICS 6, 163–174 (2002).

    CAS  PubMed  Google Scholar 

  110. Winkler, R. G. & Feldman, K. A. PCR-based identification of T-DNA insertion mutants. Methods Mol. Biol. 82, 129–136 (1998).

    CAS  PubMed  Google Scholar 

  111. Hilson, P. et al. Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res. 14, 2176–2189 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 3, e196 (2005).

    PubMed  PubMed Central  Google Scholar 

  113. Carpenter, A. E. & Sabatini, D. M. Systematic genome-wide screens of gene function. Nature Rev. Genet. 5, 11–22 (2004).

    CAS  PubMed  Google Scholar 

  114. Tax, F. E. & Vernon, D. M. T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol. 126, 1527–1538 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Burch-Smith, T. M., Anderson, J. C., Martin, G. B. & Dinesh-Kumar, S. P. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 39, 734–746 (2004).

    CAS  PubMed  Google Scholar 

  116. Brigneti, G. et al. Virus-induced gene silencing in Solanum species. Plant J. 39, 264–272 (2004).

    CAS  PubMed  Google Scholar 

  117. Boyes, D. C. et al. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Salt, D. E. Update on plant ionomics. Plant Physiol. 136, 2451–2456 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Service, R. F. Gene sequencing. The race for the $1000 genome. Science 311, 1544–1546 (2006).

    CAS  PubMed  Google Scholar 

  120. Sanda, S. L. & Amasino, R. M. Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111, 641–644 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Weigel, D. & Nordborg, M. Natural variation in Arabidopsis. How do we find the causal genes? Plant Physiol. 138, 567–568 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Stepanova for comments on the manuscript. J.R.E is supported by grants from the US National Science Foundation, National Institutes of Health and Department of Energy. J.M.A. is supported by North Carolina State University and grants from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose M. Alonso or Joseph R. Ecker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Arabidopsis Biological Resource Center Stocks

Arabidopsis 2010

Lehle Seeds

New Wisconsin T-DNA Lines — pDs–Lox Vector web site

Nottingham Arabidopsis Stock Center

SIGnAL — Salk Institute Genomic Analysis Laboratory web site

The Arabidopsis Information Resource homepage

Glossary

Whole-genome tiling microarray

A high-density oligonucleotide array that represents the majority of DNA sequences of an organism's genome.

Massively parallel signature sequencing

A sequencing procedure that allows the reading, in parallel, of short sequence segments, about 17 or 12 nt long, from hundreds of thousands of microbead-attached cDNAs.

Serial analysis of gene expression

A technique that is used to obtain short sequence tags (typically 16 nt long) from large numbers of cDNA clones by cutting, concatemerizing and finally sequencing cDNA fragments.

Shotgun mass spectrometry

A bottom-up proteomics approach that is used in the identification of individual components of a complex protein mixture by the identification of peptide fragments on the basis of their mass.

Mismatch-repair detection on tag arrays

A hybridization-based technique that combines a bacterial selection assay and microarray analysis to rapidly scan large genomic regions for the presence of DNA polymorphisms.

loxP

A sequence that is specifically recognized by the Cre recombinase from the bacteriophage P1. Cre catalyses the recombination between two loxP sequences.

RNA interference

A form of gene silencing in which dsRNA induces the degradation of homologous endogenous mRNA transcripts, thereby mimicking the effect of reduction, or loss, of gene activity.

Co-suppression

Silencing the expression of an endogenous gene, which is caused by the expression of a transgene bearing high levels of sequence identity with the endogenous gene.

Post-transcriptional gene silencing

Refers to the general mechanisms that are involved in gene silencing at the post-transcriptional level independently of the initial silencing agent, that is, double-stranded, antisense or sense RNA.

Small interfering RNA

20–25 nucleotide long RNA molecules that are generated during the post-transcriptional gene-silencing process and act as key determinants of the sequence specificity of the silencing mechanism.

MicroRNA genes

Genome-encoded or artificial genes; the RNAs that are transcribed from them are processed to generate small RNA fragments (20–25 nt long) that target specific mRNAs for degradation or inhibit their translation into proteins.

Saturation mutagenesis

Mutagenesis as a result of which there should be a 100% probability of identifying at least one mutation in any given gene.

Thermal asymmetrical interlaced PCR

A PCR-based strategy that utilizes nested primers, which are complementary to a known DNA sequence, and degenerate primers to amplify the unknown flanking DNA regions.

Adaptor ligation PCR

A PCR-based approach that is used to determine the sequence flanking a DNA region of known sequence. It utilizes two sets of nested primers and a DNA adaptor that, after its ligation to fragmented DNA, facilitates the amplification of the desired DNA region.

Accession

A sample of a plant variety that is collected at a specific location and time. The terms ecotype, wild type and accession are not uniformly used in the Arabidopsis field and often cause confusion. The term accession is probably the most appropriate way to describe the Arabidopsis laboratory lines that are collected initially from the wild.

Virus-induced gene silencing

Gene silencing that is triggered by a viral vector that encodes a dsRNA with high sequence identity to an endogenous gene.

Sequencing by synthesis

A group of new sequencing technologies in which the identity of the bases is determined as they are added to a newly synthesized DNA molecule.

Ultra high-throughput sequencing

A compendium of new sequencing technologies that have a common final aim of accelerating (from years to days or hours) and reducing the cost (from millions to hundreds or thousands of dollars) of genome sequencing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, J., Ecker, J. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7, 524–536 (2006). https://doi.org/10.1038/nrg1893

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing