Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mendelian disorders deserve more attention

Abstract

The study of inherited monogenic diseases has contributed greatly to our mechanistic understanding of pathogenic mutations and gene regulation, and to the development of effective diagnostic tools. But interest has gradually shifted away from monogenic diseases, which collectively affect only a small fraction of the world's population, towards multifactorial, common diseases. The quest for the genetic variability associated with common traits should not be done at the expense of Mendelian disorders, because the latter could still contribute greatly to understanding the aetiology of complex traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progress in disease-gene identification.

Similar content being viewed by others

References

  1. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  2. The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306, 636–640 (2004).

  3. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A. & McKusick, V. A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514–D517 (2005).

    Article  CAS  Google Scholar 

  4. Antonarakis, S. E. & McKusick, V. A. OMIM passes the 1,000-disease-gene mark. Nature Genet. 25, 11 (2000).

    Article  CAS  Google Scholar 

  5. Stenson, P. D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 21, 577–581 (2003).

    Article  CAS  Google Scholar 

  6. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  Google Scholar 

  7. Sonnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469 (2005).

    Article  CAS  Google Scholar 

  8. Bittles, A. Consanguinity and its relevance to clinical genetics. Clin. Genet. 60, 89–98 (2001).

    Article  CAS  Google Scholar 

  9. Hackstein, J. H., Hochstenbach, R. & Pearson, P. L. Towards an understanding of the genetics of human male infertility: lessons from flies. Trends Genet. 16, 565–572 (2000).

    Article  CAS  Google Scholar 

  10. Strachan, T., Abitbol, M., Davidson, D. & Beckmann, J. S. A new dimension for the human genome project: towards comprehensive expression maps. Nature Genet. 16, 126–132 (1997).

    Article  CAS  Google Scholar 

  11. de Vries, B. B. et al. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 77, 606–616 (2005).

    Article  CAS  Google Scholar 

  12. Vissers, L. E. et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genet. 36, 955–957 (2004).

    Article  CAS  Google Scholar 

  13. Auwerx, J. et al. The European dimension for the mouse genome mutagenesis program. Nature Genet. 36, 925–927 (2004).

    Article  CAS  Google Scholar 

  14. Austin, C. P. et al. The knockout mouse project. Nature Genet. 36, 921–924 (2004).

    Article  CAS  Google Scholar 

  15. Ben Yaou, R. et al. Genetics of laminopathies. Novartis Found. Symp. 264, 81–90; discussion 90–97, 227–230 (2005).

    Google Scholar 

  16. Liu, J. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nature Genet. 20, 31–36 (1998).

    Article  CAS  Google Scholar 

  17. Bashir, R. et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nature Genet. 20, 37–42 (1998).

    Article  CAS  Google Scholar 

  18. Gambetti, P., Parchi, P. & Chen, S. G. Hereditary Creutzfeldt–Jakob disease and fatal familial insomnia. Clin. Lab. Med. 23, 43–64 (2003).

    Article  Google Scholar 

  19. Phinney, A. L. et al. Mouse models of Alzheimer's disease: the long and filamentous road. Neurol. Res. 25, 590–600 (2003).

    Article  CAS  Google Scholar 

  20. Kuehn, M. R., Bradley, A., Robertson, E. J. & Evans, M. J. A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298 (1987).

    Article  CAS  Google Scholar 

  21. Pearson, C. E., Edamura, K. N. & Cleary, J. D. Repeat instability: mechanisms of dynamic mutations. Nature Rev. Genet. 6, 729–742 (2005).

    Article  CAS  Google Scholar 

  22. Rabionet, R., Gasparini, P. & Estivill, X. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding β connexins. Hum. Mutat. 16, 190–202 (2000).

    Article  CAS  Google Scholar 

  23. Buratti, E., Brindisi, A., Pagani, F. & Baralle, F. E. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am. J. Hum. Genet. 74, 1322–1325 (2004).

    Article  CAS  Google Scholar 

  24. Cutting, G. R. Modifier genetics: cystic fibrosis. Annu. Rev. Genomics Hum. Genet. 6 237–260 (2005).

    Article  CAS  Google Scholar 

  25. Weatherall, D. J. Phenotype–genotype relationships in monogenic disease: lessons from the thalassaemias. Nature Rev. Genet. 2, 245–255 (2001).

    Article  CAS  Google Scholar 

  26. Karmous-Benailly, H. et al. Antenatal presentation of Bardet–Biedl syndrome may mimic Meckel syndrome. Am. J. Hum. Genet. 76, 493–504 (2005).

    Article  CAS  Google Scholar 

  27. Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    Article  CAS  Google Scholar 

  28. Consortium., T. I. H. The international HapMap project. Nature 426, 789–796 (2003).

    Article  Google Scholar 

  29. Altshuler, D. et al. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

    Article  Google Scholar 

  30. Abbadi, N. et al. Additional case of female monozygotic twins discordant for the clinical manifestations of Duchenne muscular dystrophy due to opposite X-chromosome inactivation. Am. J. Med. Genet. 52, 198–206 (1994).

    Article  CAS  Google Scholar 

  31. Bras, J. M. et al. G2019S dardarin substitution is a common cause of Parkinson's disease in a Portuguese cohort. Mov. Disord. 20, 1653–1655 (2005).

    Article  Google Scholar 

  32. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  CAS  Google Scholar 

  33. Kajiwara, K., Berson, E. L. & Dryja, T. P. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264, 1604–1608 (1994).

    Article  CAS  Google Scholar 

  34. Katsanis, N. et al. Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science 293, 2256–2259 (2001).

    Article  CAS  Google Scholar 

  35. Beckmann, J. S. The Reunion paradox and the digenic model. Am. J. Hum. Genet. 59, 1400–1402 (1996).

    CAS  Google Scholar 

  36. Wang, D., Johnson, A. D., Papp, A. C., Kroetz, D. L. & Sadee, W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet. Genomics 15, 693–704 (2005).

    Article  CAS  Google Scholar 

  37. Williams, T. N. et al. An immune basis for malaria protection by the sickle cell trait. PLoS Med. 2, e128 (2005).

    Article  Google Scholar 

  38. Nagel, R. L. Epistasis and the genetics of human diseases. C. R. Biol. 328, 606–615 (2005).

    Article  CAS  Google Scholar 

  39. Nadeau, J. H. Modifier genes in mice and humans. Nature Rev. Genet. 2, 165–174 (2001).

    Article  CAS  Google Scholar 

  40. Antonarakis, S. E., Krawczak, M., Cooper, D. M. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R. et al.) 343–378 (McGraw–Hill, New York, 2001).

    Google Scholar 

  41. Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872 (2004).

    Article  CAS  Google Scholar 

  42. Frikke-Schmidt, R., Nordestgaard, B. G., Jensen, G. B. & Tybjaerg-Hansen, A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J. Clin. Invest. 114, 1343–1353 (2004).

    Article  CAS  Google Scholar 

  43. Lindsay, E. A. et al. Schizophrenia and chromosomal deletions within 22q11.2. Am. J. Hum. Genet. 56, 1502–1503 (1995).

    CAS  Google Scholar 

  44. Millar J. K., et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310, 1187–1191 (2005).

    Article  CAS  Google Scholar 

  45. Harper, P. S., Harley, H. G., Reardon, W. & Shaw, D. J. Anticipation in myotonic dystrophy: new light on an old problem. Am. J. Hum. Genet. 51, 10–16 (1992).

    CAS  Google Scholar 

  46. Ibanez, P. et al. Causal relation between α-synuclein gene duplication and familial Parkinson's disease. Lancet 364, 1169–1171 (2004).

    Article  CAS  Google Scholar 

  47. Ledbetter, D. H. & Engel, E. Uniparental disomy in humans — development of an imprinting map and its implications for prenatal diagnosis. Hum. Mol. Genet. 4, 1757–1764 (1995).

    Article  CAS  Google Scholar 

  48. da Rocha, S. T. & Ferguson-Smith, A. C. Genomic imprinting. Curr. Biol. 14, R646–R649 (2004).

    Article  CAS  Google Scholar 

  49. Tupler, R. & Gabellini, D. Molecular basis of facioscapulohumeral muscular dystrophy. Cell. Mol. Life Sci. 61, 557–566 (2004).

    Article  CAS  Google Scholar 

  50. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26 (2006).

    Article  CAS  Google Scholar 

  51. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  Google Scholar 

  52. Eriksen, J. L., Przedborski, S. & Petrucelli, L. Gene dosage and pathogenesis of Parkinson's disease. Trends Mol. Med. 11, 91–96 (2005).

    Article  CAS  Google Scholar 

  53. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  Google Scholar 

  54. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  55. Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the human genome. Nature Rev. Genet. 7, 85–97 (2006).

    Article  CAS  Google Scholar 

  56. Aitman, T. J. et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439, 851–855 (2006).

    Article  CAS  Google Scholar 

  57. Dermitzakis, E. T., Reymond, A. & Antonarakis, S. E. Conserved non-genic sequences — an unexpected feature of mammalian genomes. Nature Rev. Genet. 6, 151–157 (2005).

    Article  CAS  Google Scholar 

  58. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  59. Eddy, S. R. Non-coding RNA genes and the modern RNA world. Nature Rev. Genet. 2, 919–929 (2001).

    Article  CAS  Google Scholar 

  60. Brunner, H. G. & van Driel, M. A. From syndrome families to functional genomics. Nature Rev. Genet. 5, 545–551 (2004).

    Article  CAS  Google Scholar 

  61. Gavin, A. C. & Superti-Furga, G. Protein complexes and proteome organization from yeast to man. Curr. Opin. Chem. Biol. 7, 21–27 (2003).

    Article  CAS  Google Scholar 

  62. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  Google Scholar 

  63. D'Andrea, A. D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer 3, 23–34 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the past and present members of our laboratories for ideas, debates and discussions. Mrs J. Amberger at OMIM, John Hopkins University, is gratefully acknowledged for her assistance in providing the data of figure 1a. S.E.A.'s laboratory is supported by the Swiss National Science Foundation (SNF), European Union, National Institutes of Health and the Lejeune and ChildCare Foundations. Work in J.S.B.'s laboratory is funded by grants from the SNF and the University of Lausanne.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer disease

Bardet–Biedl syndrome

CHARGE syndrome

cystic fibrosis

Duchenne muscular dystrophy

facioscapulohumeral muscular dystrophy

Fanconi anaemia

hereditary prion disease

Lesch–Nyhan syndrome

limb girdle muscular dystrophy type 2B

Meckel syndrome

Miyoshi myopathy

Parkinson disease

sickle-cell anaemia

thalassaemias

FURTHER INFORMATION

Online Mendelian Inheritance in Man (OMIM)

Human Gene Mutation Database (HGMD)

The International Hapmap Project

Affymetrix

Illumina

Sequenom

The ENCODE Project

Glossary

Anticipation

A phenomenon that describes the property of some disorders to increase in severity in successive generations.

Copy-number polymorphism (CNP) or variant (CNV)

A structural genomic variant, resulting in confined copy-number changes in a defined chromosomal region. If its population allele frequency is less than 1%, then one refers to it as a variant; the term polymorphism refers instead to variants that occur at an allelic frequency of 1% or higher.

Discordant monozygotic twins

Twins that share identical genomes but are not affected with the same disorder; one twin being affected but the other not.

Epistatic interaction

The influence of the interaction of multiple loci on phenotypic variation.

Expressivity

The extent to which a genetic defect is expressed.

High-resolution tiling path CGH arrays

Arrays for comparative genomic hybridization (CGH) offering a resolution in the order of kilobases. The arrays are currently based on BACs or long oligonucleotides.

Mendelian disease

A disease for which alternative genotypes fall into distinct, discrete phenotypic classes, following Gregor Mendel's laws of inheritance.

Monogenic disorder

A disease that is mainly caused by variants in a single gene.

Multifactorial

Multifactorial traits are determined by a combination of genetic as well as non-genetic factors, each contributing to the overall phenotype.

Parental imprinting

Differential allele expression that depends on parental origin.

Penetrance

The frequency with which a given genotype manifests itself in a given phenotype.

Triplet-repeat copy number

Triplet-repeat copy-number mutations are dynamic mutations that are due to the expansion or contraction in the number of triplet nucleotide repeats.

Uniparental disomy

(UPD). A state wherein both homologues (alleles) at a locus derive from the same parent; for some chromosomal segments, UPD generates characteristic syndromes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonarakis, S., Beckmann, J. Mendelian disorders deserve more attention. Nat Rev Genet 7, 277–282 (2006). https://doi.org/10.1038/nrg1826

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing