Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis

Key Points

  • Susceptibility to leishmaniasis is influenced by multiple host genes, most of which are low-penetrance QTLs. They have been difficult to map in humans because of their number, the genetic heterogeneity of the population and a range of environmental influences that affect individual risk.

  • This disease can be dissected genetically using mouse models by employing inbred, congenic, recombinant inbred and recombinant congenic strains, and a number of loci and mutant genes that control the response to infection have been described.

  • The most extensive information about the genetics of leishmaniasis in mouse models has been obtained with Leishmania major, studies of which have revealed a multigenic basis of susceptibility, and have led to the mapping of more than 20 QTLs — the L. major response (Lmr) loci.

  • These studies have also revealed the functional heterogeneity of individual genes, and have indicated an organ-specific control of anti-parasite responses. The functional heterogeneity of susceptibility genes has also been described in the response to Borrelia burgdorferi and, to a lesser extent, in other infections, and might be a common characteristic of the host response.

  • Analysis of the response to L. major in 20 recombinant congenic strains has demonstrated that several different functional patterns of immune-response components might be associated with disease or healing, depending on the host genotype. This indicates that susceptibility to L. major is not due to a single mechanism, but rather can result from several different combinations of effects of multiple genes that interact in a functional network.

  • Analysis of the response to L. major showed that when a sufficient number of loci is identified, the disease phenotype can be predicted.

  • The early and later stages of infection with L. donovani are controlled by different genes.

  • Several Lmr loci co-localize with QTLs and influence the response to other infectious agents, including both bacteria and parasites. This indicates that there are clusters of either functionally related genes or genes that control the response to several infections.

  • Overall, genetic studies of susceptibility to leishmaniasis in mice have revealed a network-like complexity for the combined effects of the multiple QTLs that are involved. Therefore, the most important components (genes with the largest effect) might vary, depending on the genotype of the host. This model could become a general paradigm for host responses to infection.

Abstract

Susceptibility to infectious disease is influenced by multiple host genes, most of which are low penetrance QTLs that are difficult to map in humans. Leishmaniasis is a well-studied infectious disease with a variety of symptoms and well-defined immunological features. Mouse models of this disease have revealed more than 20 QTLs as being susceptibility genes, studies of which have made important contributions to our understanding of the host response to infection. The functional effects of individual QTLs differ widely, indicating a networked regulation of these effects. Several of these QTLs probably also influence susceptibility to other infections, indicating that their characterization will contribute to our understanding of susceptibility to infectious disease in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infection cycle of leishmaniasis.
Figure 2: Loci and genes that control the mouse response to leishmaniasis and other infections.

Similar content being viewed by others

References

  1. Somech, R. et al. Genetic predisposition to infectious pathogens: a review of less familiar variants. Pediatr. Infect. Dis. J. 5, 457–461 (2003).

    Google Scholar 

  2. Pharoah, P. D. et al. Polygenic susceptibility to breast cancer and implications for prevention. Nature Genet, 31, 33–36 (2002).

    Article  CAS  Google Scholar 

  3. Reiner, S. L. & Locksley, R. M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13, 151–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Walton, B. C. & Valverde, L. Racial difference in espundia. Ann. Trop. Med. Hyg. 73, 23–29 (1979).

    Article  CAS  Google Scholar 

  5. Bucheton, B. et al. The interplay between environmental and host factors during an outbreak of visceral leishmaniasis in eastern Sudan. Microbes Infect. 4, 1449–1457 (2002).

    Article  PubMed  Google Scholar 

  6. Bradley, D. J. & Kirkley, J. Variation in susceptibility of mouse strains to Leishmania donovani infection. Trans. R. Soc. Trop. Med. Hyg. 66, 527–528 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. Kellina, O. I. Differences in the sensitivity of inbred mice of different lines to Leishmania tropica major. Med. Parazitol. (Mosk). 42, 279–285 (1973) (in Russian).

    CAS  PubMed  Google Scholar 

  8. Altet, L. et al. Mapping and sequencing of the canine NRAMP1 gene and identification of mutations in leishmaniasis-susceptible dogs. Infect. Immun. 70, 2763–2771 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quinnell, R. J. et al. Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics 55, 23–28 (2003).

    CAS  PubMed  Google Scholar 

  10. Rittig, M. G. & Bogdan, C. Leishmania–host-cell interaction: complexities and alternative views. Parasitol. Today 30, 679–689 (2000). A review that focuses mainly on the early stages of infection and describes the mechanisms of interaction of macrophages and non-macrophage host cells with Leishmania parasites.

    Google Scholar 

  11. Leiby, D. A. et al. in Parasitic Infections and the Immune System (ed. Kierzenbaum, F.) 87–118 (Academic, New York, 1994).

    Book  Google Scholar 

  12. Duarte, M. I. et al. Interstitial pneumonitis in human visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 83, 73–76 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Laskay, T. et al. Early parasite containment is decisive for resistance to Leishmania major infection. Eur. J. Immunol. 25, 2220–2227 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Prasad, L. S. & Sen, S. Migration of Leishmania donovani amastigotes in the cerebrospinal fluid. Am. J. Trop. Med. Hyg. 55, 652–654 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Vinuelas, J. et al. Meningeal leishmaniosis induced by Leishmania infantum in naturally infected dogs. Vet. Parasitol. 101, 23–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Abreu-Silva, A. L. et al. Central nervous system involvement in experimental infection with Leishmania (Leishmania) amazonensis. Am. J. Trop. Med. Hyg. 68, 661–665 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Dedet, J- P. in Leishmania (ed. Farrell, J. P.) 1–10 (Kluwer Academic Publishers, Boston, 2002).

    Book  Google Scholar 

  18. McMahon-Pratt, D. & Alexander, J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol. Rev. 201, 206–224 (2004). A clearly presented review of the pathology of New World and Old World leishmaniasis and possible underlying immunological mechanisms.

    Article  PubMed  Google Scholar 

  19. Pearson R. D. in Immunology and Molecular Biology of Parasitic Infections 3rd edn (ed. Warren, K. S.). 71–86 (Blackwell Scientific, Boston, 1993).

    Google Scholar 

  20. Zijlstra, E. E. et al. Post-kala-azar dermal leishmaniasis. Lancet Infect. Dis. 3, 87–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Berman, J. D. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic development in the last 10 years. Clin. Infect. Dis. 24, 684–703 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Herwaldt, B. L. Leishmaniasis. Lancet 354, 1191–1199 (1999). A useful review of the epidemiology and clinical aspects of leishmaniasis.

    Article  CAS  PubMed  Google Scholar 

  23. Sacks, D. & Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nature Rev. Immunol. 11, 845–858 (2002). A comprehensive review that describes different immunological mechanisms that are involved in the control of L. major.

    Article  CAS  Google Scholar 

  24. Kaye, P. M. et al. The immunopathology of experimental visceral leishmaniasis. Immunol. Rev. 201, 239–253 (2004). A review of the distinct tissue responses and the various pathological changes that are caused by Leishmania parasites.

    Article  CAS  PubMed  Google Scholar 

  25. Heinzel, F. P. et al. Reciprocal expression of interferon g or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J. Exp. Med. 169, 59–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Liew, F. Y. Functional heterogeneity of CD4+ T cells in leishmaniasis. Immunol. Today 10, 40–45 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Sacks, D. & Anderson, C. Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol. Rev. 201, 225–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Sypek, J. P. et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J. Exp. Med. 177, 1797–1802 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Moll, H. Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis. Immunol Today 14, 383–387 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Tacchini-Cottier, F. et al. An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J. Immunol. 165, 2628–2636 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Shankar, A. H. & Titus, R. G. T cell and non-T cell compartments can independently determine resistance to Leishmania major. J. Exp. Med. 181, 845–855 (1995). An elegant study of the role of T-cell and non-T-cell compartments in L. major infection, which shows that the presence of the curing genotype in only one compartment is sufficient to confer cure, and that T cells of a non-curing genotype can mediate cure in a curing environment.

    Article  CAS  PubMed  Google Scholar 

  32. Momeni, A. Z. & Aminjavaheri, M. Clinical picture of cutaneous leishmaniasis in Isfahan, Iran. Int. J. Dermatol. 33, 260–265 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Weigle, K. & Saravia, N. G. Natural history, clinical evolution, and the host–parasite interaction in New World cutaneous leishmaniasis. Clin. Dermatol. 14, 433–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Sharma, M. C. et al. Leishmania donovani in blood smears of asymptomatic persons. Acta Trop. 76, 195–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Barbier, D. et al. Susceptibility to human cutaneous leishmaniasis and HLA, Gm, Km markers. Tissue Antigens 30, 63–67 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Petzl-Erler, M. L., Belich, M. P. & Queiroz-Telles, F. Association of mucosal leishmaniasis with HLA. Hum. Immunol. 32, 254–260 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Lara, M. L. et al. Immunogenetics of human American cutaneous leishmaniasis. Study of HLA haplotypes in 24 families from Venezuela. Hum. Immunol. 30, 129–135 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Cabrera, M. et al. Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J. Exp. Med. 182, 1259–1264 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Peacock, C. S. et al. Genetic analysis of multicase families of visceral leishmaniasis in northeastern Brazil: no major role for class II or class III regions of HLA. Genes Immun. 6, 350–358 (2002).

    Article  CAS  Google Scholar 

  40. Meddeb-Garnaoui, A. et al. Association analysis of HLA-class II and class III gene polymorphisms in the susceptibility to mediterranean visceral leishmaniasis Hum. Immunol. 62, 509–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Mohamed, H. S. et al. Genetic susceptibility to visceral leishmaniasis in The Sudan: linkage and association with IL4 and IFNGR1. Genes Immun. 4, 351–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Bucheton, B. et al. Genetic control of visceral leishmaniasis in a Sudanese population: candidate gene testing indicates a linkage to the NRAMP1 region. Genes Immun. 4, 104–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Bucheton, B. et al. A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar. Am. J. Hum. Genet. 73, 1052–1060 (2003). The only published genome-wide scan that analyses susceptibility to human leishmaniasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohamed, H. S. et al. SLC11A1 (formerly NRAMP1) and susceptibility to visceral leishmaniasis in The Sudan. Eur. J. Hum. Genet. 12, 66–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Raja, K. M. et al. Unusual clinical variants of cutaneous leishmaniasis in Pakistan. Br. J. Dermatol. 139, 111–113 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Osman, O. F., Kager, P. A. & Oskam, L. Leishmaniasis in the Sudan: a literature review with emphasis on clinical aspects. Trop. Med. Int. Health 5, 553–562 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Weiss, K. M. & Terwilliger, J. D. How many diseases does it take to map a gene with SNPs? Nature Genet. 26, 151–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Dunning, A. M. et al. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 8, 843–854 (1999).

    CAS  PubMed  Google Scholar 

  49. Wang, W. Y. S. et al. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet. 6, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Lucentini, J. Gene association studies typically wrong. Scientist 18, 20 (2004).

    Google Scholar 

  51. De Bakker, P. I. W. et al. Efficiency and power in genetic association studies. Nature Genet. 37, 1217–1223 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Bedell, M. A. et al. Mouse models of human disease. Part II: recent progress and future directions. Genes Dev. 11, 11–43 (1997).

    Article  PubMed  Google Scholar 

  53. Demant P. Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nature Rev. Genet. 4, 721–734 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. DeTolla, L. J., Scott, P. A. & Farrell, J. P. Single gene control of resistance to cutaneous leishmaniasis in mice. Immunogenetics 14, 29–39 (1981).

    Article  CAS  PubMed  Google Scholar 

  55. Beebe, A. M. et al. Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity 6, 551–557 (1997). Describes the mapping of multiple loci that control susceptibility to cutaneous lesions in B10.D2 mice.

    Article  CAS  PubMed  Google Scholar 

  56. Roberts, L. J. et al. Resistance to Leishmania major is linked to H2 region on chromosome 17 and to chromosome 9. J. Exp. Med. 9, 1705–1710 (1997).

    Article  Google Scholar 

  57. Roberts, L. J. Chromosomes X, 9, and the H2 locus interact epistatically to control Leishmania major infection. Eur. J. Immunol. 29, 3047–3050 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Fortier, A. H., Meltzer, M. S. & Nacy, C. A. Susceptibility of inbred mice to Leishmania tropica infection: genetic control of the development of cutaneous lesions in P/J mice. J. Immunol. 133, 454–459 (1984).

    CAS  PubMed  Google Scholar 

  59. Mock, B. A. et al. Genetic control of systemic Leishmania major infections: dissociation of intrahepatic amastigote replication from control by the Lsh gene. Infect. Immun. 50, 588–591 (1985). An elegant study that indicates the multigenic control of systemic disease that is caused by L. major.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Leclercq, V. et al. The outcome of the parasitic process initiated by Leishmania infantum in laboratory mice: a tissue-dependent pattern controlled by the Lsh and MHC loci. J. Immunol. 157, 4537–4545 (1996).

    CAS  PubMed  Google Scholar 

  61. Blackwell, J. M., Freeman, J. & Bradley, D. J. Influence of H2 complex on acquired resistance to Leishmania donovani infection in mice. Nature 283, 72–74 (1980).

    Article  CAS  PubMed  Google Scholar 

  62. DeTolla, L. J. et al. Genetic control of acquired resistance to visceral Leishmaniasis in mice. Immunogenetics 10, 353–361 (1980). References 61 and 62 are still the most comprehensive analyses of the role of the H2 haplotype in L. donovani liver infection. Reference 62 also describes the role of the Ir2 locus.

    Article  PubMed  Google Scholar 

  63. Howard, J. G., Hale, C. & Chan-Liew, W. L. Immunological regulation of experimental cutaneous leishmaniasis. 1. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunol. 2, 303–314 (1980).

    Article  CAS  PubMed  Google Scholar 

  64. Terabe, M. et al. Influence of H2 complex and non-H2 genes on progression of cutaneous lesions in mice infected with Leishmania amazonensis. Parasitol. Int. 53, 217–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Mock, B. et al. Genetic control of Leishmania major infection in congenic, recombinant inbred and F2 populations of mice. Eur. J. Immunogenet. 20, 335–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Bradley, D. J. et al. Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin. Exp. Immunol. 37, 7–14 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Demant, P., Lipoldová, M. & Svobodová, M. Resistance to Leishmania major in mice. Science 274, 1392–1393 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Lipoldová, M. et al. Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. 1, 200–206 (2000). Loci that control the response to L. major are shown to be associated with different combinations of pathological symptoms and immunological reactions. The correlation between Th2-type immune reactions and disease is limited to mice with certain genotypes.

    Article  PubMed  Google Scholar 

  69. Vladimirov, V. et al. Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect. Immun. 71, 2041–2046 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Badalová, J. et al. Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun. 3, 187–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Havelková, H. et al. Genetics of susceptibility to leshmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun. 2 March 2006 (doi:10.1038/sj.gene.6364290).

  72. Buer, J. & Balling, R. Mice, microbes, and models of infection. Nature Rev. Genet. 4, 195–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Reiner, S. L. et al. TH1 and TH2 cell antigen receptors in experimental leishmaniasis. Science 259, 1457–1460 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Güler, M. L. et al. Genetic susceptibility to Leishmania: IL-12 responsiveness in Th1 development. Science 271, 984–987 (1996).

    Article  PubMed  Google Scholar 

  75. Aitman, T. J. et al. Mononucleotide repeats are an abundant source of length variants in mouse genomic DNA. Mamm. Genome 1, 206–210 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Demant, P. & Hart, A. A. M. Recombinant congenic strains — a new tool for analysing genetic traits determined by more than one gene. Immunogenetics 24, 416–422 (1986).

    Article  CAS  PubMed  Google Scholar 

  77. Stassen, A. P. M. et al. Genetic composition of the recombinant congenic strains. Mamm. Genome 7, 55–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Baguet, A. et al. Leishmania major response locus identified by interval-specific congenic mapping of a T helper type 2 cell bias-controlling quantitative trait locus. J. Exp. Med. 200, 1605–1612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kosarová, M. et al. The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by a locus Cypr1 and loci Cypr2 and Cypr3, respectively. Immunogenetics 49, 134–141 (1999).

    Article  PubMed  Google Scholar 

  80. Sakthianandeswaren, A. et al. The wound repair controls outcome to cutaneous leishmaniasis. Proc. Natl Acad. Sci. USA 102, 15551–15556 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Lipoldová, M. et al. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics 54, 174–183 (2002). Disease or healing in different recombinant congenic strains are shown to occur in association with the different components of the immune response, demonstrating that several patterns of the immune response could be associated with the same clinical outcome, depending on the host genotype.

    Article  CAS  PubMed  Google Scholar 

  82. Stenger, S. et al. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 183, 1501–1514 (1995).

    Article  Google Scholar 

  83. Wilhelm, P. et al. Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF. J. Immunol. 166, 4012–4019 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Bradley, D. J. Letter: Genetic control of natural resistance to Leishmania donovani. Nature 250, 353–354 (1974).

    Article  CAS  PubMed  Google Scholar 

  85. Kirkpatrick, C. E. & Farrell, J. P. Leishmaniasis in beige mice. Infect. Immun. 38, 1208–1216 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Marinho, C. R. et al. Pathology affects different organs in two mouse strains chronically infected by a Trypanosoma cruzi clone: a model for genetic studies of Chagas' disease. Infect. Immun. 72, 2350–2357 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weis, J. J. et al. Identification of quantitative trait loci governing arthritis severity and humoral responses in the murine model of Lyme disease. J. Immunol. 162, 948–956 (1999).

    CAS  PubMed  Google Scholar 

  88. Roper, R. J. et al. Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun. 2, 388–397 (2001). An extensive demonstration of the functional heterogeneity of QTLs that control the response to infection by Borrelia burgdorferi.

    Article  CAS  PubMed  Google Scholar 

  89. Johnson, J. et al. Genetic analysis of influences on survival following Toxoplasma gondii infection. Int. J. Parasitol. 32, 179–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Bradley, D. J. & Kirkley, J. Regulation of Leishmania populations within the host. I. the variable course of Leishmania donovani infections in mice. Clin. Exp. Immunol. 30, 119–129 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Skamene, E. et al. Genetic regulation of resistance to intracellular pathogens. Nature 297, 506–509 (1982).

    Article  CAS  PubMed  Google Scholar 

  92. Vidal, S. M. et al. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993). Cloning of the gene Nramp , which controls the response to L. donovani, L. infantum, L. mexicana, Mycobacterium bovis bacille Calmette-Guérin and Salmonella typhimurium.

    Article  CAS  Google Scholar 

  93. Fortier, A. et al. Single gene effects in mouse models of host: pathogen interactions. J. Leukoc. Biol. 77, 868–877 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Malo, D. et al. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23, 51–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Kumanovics, A., Toyoyuki, T. & Fischer-Lindahl, K. Genomic organization of the mammalian MHC. Annu. Rev. Immunol. 21, 629–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Snell, G. D., Cudkowicz, G. & Bunker, H. P. Histocompatibility genes of mice. VII. H-13, a new histocompatibility locus in the fifth linkage group. Transplantation 5, 492–503 (1967).

    Article  CAS  PubMed  Google Scholar 

  97. Graff, R. J. & Bailey, D. W. The non-H-2 histocompatibility loci and their antigens. Transplant. Rev. 15, 26–49 (1973).

    CAS  PubMed  Google Scholar 

  98. Perou, C. M. et al. Identification of the murine beige gene by YAC complementation and positional cloning. Nature Genet. 13, 303–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Russell, J. H. & Ley, T. J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Mitsos, L. M. et al. Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun. 1, 467–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Sanchez, F. et al. Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect. Immun. 71, 126–131 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sebastiani, G. et al. Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium in wild-derived mice. Genomics 47, 180–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Trezena, A. G. et al. Co-localization of quantitative trait loci regulating resistance to Salmonella typhimurium infection and specific antibody production phenotypes. Microbes Infect. 4, 1409–1415 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. De Souza, C. M. et al. Quantitative trait loci in chromosomes 3, 8, and 9 regulate antibody production against Salmonella flagellar antigens in the mouse. Mamm. Genome 15, 630–636 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Boyartchuk, V. L. et al. Multigenic control of Listeria monocytogenes susceptibility in mice. Nature Genet. 27, 259–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Iraqi, F. et al. Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mamm. Genome 11, 645–648, 2000.

    Article  CAS  PubMed  Google Scholar 

  107. Fortin, A. et al. Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice. Proc. Natl Acad. Sci. USA 98, 10793–10798 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Malo, D. & Skamene, E. Genetic control of host resistance to infection. Trends in Genetics, 10, 365–371 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Shellam, G. R. et al. Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc. Natl Acad. Sci. USA 78, 5104–5108 (1981).

    Article  CAS  PubMed  Google Scholar 

  110. Elin, R. J., Edelin, J. B. & Wolff, S. M. Infection and immunoglobulin concentrations in Chediak-Higashi mice. Infect Immun. 10, 88–91 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tagliabue, A. et al. Genetic control of in vitro natural cell-mediated activity against Salmonella typhimurium by intestinal and splenic lymphoid cells in mice. Clin. Exp. Immunol. 56, 531–536 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Appelberg, R. et al. Susceptibility of beige mice to Mycobacterium avium: role of neutrophils. Infect. Immun. 63, 3381–3387 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Boyartchuk, V. et al. The host resistance locus sst1 controls innate immunity to Listeria monocytogenes infection in immunodeficient mice. J. Immunol. 173, 5112–5120 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Kramnik, I. et al. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 97, 8560–8565 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Pan, H. et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434, 767–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schadt, E. C. et al. Genetics of gene expression surveyed in maize, mouse, and man. Nature 422, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nature Genet. 37, 225–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Jansen, R. C. & Nap, J. P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Flint, J., Valdar, W., Shifman, S. & Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nature Rev. Genet. 6, 271–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Bailey, D. W. Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11, 325–327 (1971).

    Article  CAS  PubMed  Google Scholar 

  121. Nadeau, J. H. et al. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Mott, R. et al. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl Acad. Sci. USA 97, 12649–12654 (2000).

    Article  PubMed  Google Scholar 

  123. Wade, C. M. et al. The mosaic structure of variation in the laboratory mouse genome. Nature 420, 574–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Mitsos, L. M. et al. Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc. Natl Acad. Sci. USA 100, 6610–6615 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Foote, S. J. et al. Mouse loci for malaria-induced mortality and the control of parasitaemia. Nature Genet. 17, 380–381 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Burt, R. A. et al. Temporal expression of an H2-linked locus in host response to mouse malaria. Immunogenetics 50, 278–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Min-Oo, G. et al. Pyruvate kinase deficiency in mice protects against malaria. Nature Genet. 35, 357–362 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Roberts, M., Alexander, J. & Blackwell, J. M. Influence of Lsh, H-2, and an H-11-linked gene on visceralization and metastasis associated with Leishmania mexicana infection in mice. Infect. Immun. 57, 875–881 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute, the Grant Agency of the Czech Republic, the Academy of Sciences of the Czech Republic, Roswell Park Cancer Institute Recruitment/Start-up Funds for New Investigators, a European Commission Contract and a Netherlands Scientific Research Organization Program Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Lipoldová.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome Project

Leishmania major

FURTHER INFORMATION

Marie Lipoldová's homepage

WHO Leishmaniasis information

Mouse Genome Informatics

International HapMap Project

Glossary

Penetrance

The degree of effect of a gene on the phenotypes it controls. Low-penetrance disease-susceptibility genes increase the probability of developing a disease, but not all carriers of such genes become affected.

Neutrophils

Circulating phagocytic granulocytes that are involved in the early inflammatory response.

Dendritic cells

Cells that present antigen to T cells, and stimulate cell proliferation and the immune response.

T helper cells

T cells that generally carry CD4 membrane glycoprotein. They secrete numerous cytokines that activate B cells, cytotoxic T cells and macrophages.

Interferon-γ

(IFN-γ). A glycoprotein that is mainly produced by natural killer cells and T helper lymphocytes. It regulates many aspects of the immune response, including induction of antiviral responses, and stimulates macrophages to kill invading pathogens.

Regulatory T cells

Maintain immune tolerance by suppressing the function of T cells, B cells, macrophages, dendritic cells and natural killer cells.

Non-cure response

A response in which an infection fails to heal, but is not necessarily fatal.

New World Leishmania species

Species that originate in South and Central America: Leishmania (Viannia) peruviana, L.(V.) braziliensis, L.(V.) guyanensis, L. amazonensis, L. mexicana and L. chagasi (which is L. infantum that has been brought to the New World only recently).

Old World Leishmania species

Species that inhabit the world that was known to Europeans before the voyages of Columbus, and consist of L. major, L. tropica, L. infantum, L. aethiopica and L. donovani.

Association study

When a genetic variant is genotyped in a population for which phenotypic information is available (such as disease occurrence or a quantitative trait), there is said to be an association between them if a correlation is observed between the phenotype and the variant.

HLA class I and class II molecules

Class I and class II antigens are polymorphic membrane glycoproteins that are encoded by the human MHC and expressed on all nucleated cells and antigen-presenting cells, respectively. They form complexes with antigenic peptides and present them to cytotoxic or T helper cells.

Post-Kala-azar dermal leishmaniasis

Arash that sometimes develops 0.5–13 months following the apparently successful treatment of visceral leishmaniasis. In most cases, it heals spontaneously.

CD3

A membrane-protein complex that is associated with the T-cell receptor and has a role in signal transduction.

Splenomegaly

Enlargement of spleen.

Hepatomegaly

Enlargement of liver.

Inducible nitric oxide synthase

(iNOS). An enzyme that is induced in macrophages by microbial molecules together with T-cell-derived IFN. It produces nitric oxide, a reactive radical with potent antimicrobial activity.

Innate immunity

Non-specific host defences that exist prior to exposure to an antigen, and involve anatomic, physiological, phagocytic and inflammatory mechanisms.

Acquired immunity

Host defences that are mediated by B cells and T cells following exposure to antigen, and that exhibit high levels of specificity and provide an immunological 'memory'.

Haplotype

An experimentally determined profile of genetic markers that are present on a single chromosome of any given individual.

Major histocompatibility complex

(MHC). A complex locus on chromosome 6p in humans and chromosome 17 in mice. It comprises numerous genes, including the class I and class II MHC antigens, that present antigenic peptides to cytotoxic T cells and T-helper cells, respectively. The MHC is essential for development of the acquired immune response.

Antigen presentation

Conversion of protein antigens into MHC-associated peptide fragments that can be recognized by T cells.

Complement

Proteins of the complement pathway coat and lyse invading organisms, and release inflammatory mediators.

Granuloma

A tumour-like mass or nodule that develops due to a chronic inflammatory response. It contains activated macrophages, epithelioid cells (modified macrophages), T cells and multinucleated giant cells that result from the fusion of macrophages.

Natural killer cell

(NK cell). A large granular lymphocyte that has cytotoxic activity but does not express antigen-binding receptors. It exhibits antibody-independent killing of tumour cells, and also participates in antibody-dependent cell-mediated cytotoxicity.

Genetical genomics

A strategy that correlates information on the segregation of genomic regions (in populations or experimental crosses) with gene-expression patterns (in microarray studies). This approach reveals patterns of cis- and trans-regulation of gene expression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipoldová, M., Demant, P. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7, 294–305 (2006). https://doi.org/10.1038/nrg1832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing