Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Paternal contribution: new insights and future challenges

Key Points

  • Although it has been widely accepted that all that fathers essentially contribute to the next generation is half their genome, recent progress in reproductive biology indicates that the paternal contribution has been underestimated.

  • Although early reports of the presence of RNA in ejaculate sperm were rightfully challenged on a technical level, several groups, using different techniques, have now established their presence in human, mouse and plant sperm.

  • The ability to recover RNA from mature sperm reflects their unique packaging on synthesis in the round spermatid, as they are covered with a protective protein coating during the final burst of transcription.

  • Using high-throughput techniques, sperm transcript profiles from normal fertile men have been developed. These sperm transcripts represent a defined subset of those observed in testis. Interestingly, a series of antisense RNAs have also been identified.

  • Transcription factors, RNAs and signalling molecules are often recovered along with preparations of perinuclear theca or nuclear matrix. This confirms the close contact of these factors and structures that function as nuclear organizing centres.

  • PLCZ (phospholipase Cζ) is delivered by the sperm at fertilization, and has an integral role in the cortical reaction and the induction of a series of Ca2+ oscillations. Human and other primate sperm also deliver a centriole, one of the first structures that was shown to be paternally derived.

  • At the first division after fertilization, a gradient of factors is distributed between the two daughter cells. This has been associated with the beginning of cell-fate specification, raising the intriguing possibility that paternally derived factors might also segregate and be required until the activation of the zygotic genome.

  • The recent demonstration that the RNAs are delivered on fertilization has raised important questions concerning their potential functions. To date, several promising candidates have been identified, including an mRNA that encodes PLCZ and an miRNA that might modulate the insulin-like growth factor 2 receptor, IGF2R.

  • Studies of spermatozoal RNAs as diagnostic tools have been successful. They can be used as biomarkers of fertility in the clinic and in forensic science. Other applications are also being explored, including their use as environmental monitoring agents.

Abstract

It has been widely held that all that fathers essentially contribute to the next generation is half their genome. However, recent progress towards understanding biological processes such as sperm maturation and fertilization now indicates that the paternal contribution has been underestimated. To tackle some of the misconceptions surrounding the paternal contribution, the factors that are actually delivered by the sperm at fertilization and their potential developmental functions will be discussed using data from humans and animal models. Although still in their infancy, the practical applications of using sperm RNAs have already emerged in reproductive medicine as markers that are indicative of successful vasectomy. They are also beginning to appear in the forensic sciences and, within the next decade, might appear in the environmental sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spermatogenesis.
Figure 2: Ovum fertilization.
Figure 3: An ontology of biological processes that are represented by sperm RNAs.
Figure 4: Delivery of RNAs present in human sperm.

Similar content being viewed by others

References

  1. Cooke, H. J. & Saunders, P. T. Mouse models of male infertility. Nature Rev. Genet. 3, 790–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Wassarman, P. M., Jovine, L. & Litscher, E. S. A profile of fertilization in mammals. Nature Cell. Biol. 3, E59–E64 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Dadoune, J. P., Siffroi, J. P. & Alfonsi, M. F. Transcription in haploid male germ cells. Int. Rev. Cytol. 237, 1–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Mattick, J. S. RNA regulation: a new genetics? Nature Rev. Genet. 5, 316–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Stanton, J. A., Macgregor, A. B. & Green, D. P. Gene expression in the mouse preimplantation embryo. Reproduction 125, 457–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Zeng, F., Baldwin, D. A. & Schultz, R. M. Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Schultz, R. M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Sutovsky, P. & Schatten, G. Paternal contributions to the mammalian zygote: fertilization after sperm–egg fusion. Int. Rev. Cytol. 195, 1–65 (2000).

    CAS  PubMed  Google Scholar 

  9. Cummins, J. M. Cytoplasmic inheritance and its implications for animal biotechnology. Theriogenology 55, 1381–1399 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Ostermeier, G. C., Dix, D. J., Miller, D., Khatri, P. & Krawetz, S. A. Spermatozoal RNA profiles of normal fertile men. Lancet 360, 772–777 (2002). A paper showing the first microarray analysis of RNA from normal human sperm.

    Article  CAS  PubMed  Google Scholar 

  11. Ostermeier, G. C., Goodrich, R. J., Moldenhauer, J. S., Diamond, M. P. & Krawetz, S. A. A suite of novel human spermatozoal RNAs. J. Androl. 26, 70–74 (2005). A description of miRNAs isolated from human sperm.

    CAS  PubMed  Google Scholar 

  12. Ostermeier, G. C., Miller, D., Huntriss, J. D., Diamond, M. P. & Krawetz, S. A. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429, 154 (2004). This study showed delivery of human RNA from sperm on fertilization.

    Article  CAS  PubMed  Google Scholar 

  13. Schultz, R. M. Regulation of zygotic gene activation in the mouse. Bioessays 15, 531–538 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Telford, N. A., Watson, A. J. & Schultz, G. A. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Eisenbach, M. & Tur-Kaspa, I. Do human eggs attract spermatozoa? Bioessays 21, 203–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, M. et al. Sperm numbers and distribution within the human fallopian tube around ovulation. Hum. Reprod. 8, 2019–2026 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Nilsson, L. A Child is Born (Delacorte Press/Seymour Lawrence, New York, 1990).

    Google Scholar 

  18. Cooper, T. G. Cytoplasmic droplets: the good, the bad or just confusing? Hum. Reprod. 20, 9–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Cooper, T. G., Yeung, C. H., Fetic, S., Sobhani, A. & Nieschlag, E. Cytoplasmic droplets are normal structures of human sperm but are not well preserved by routine procedures for assessing sperm morphology. Hum. Reprod. 19, 2283–2288 (2004).

    Article  PubMed  Google Scholar 

  20. Sutovsky, P., Manandhar, G., Wu, A. & Oko, R. Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc. Res. Tech. 61, 362–378 (2003).

    Article  PubMed  Google Scholar 

  21. Penttinen, J., Pujianto, D. A., Sipila, P., Huhtaniemi, I. & Poutanen, M. Discovery in silico and characterization in vitro of novel genes exclusively expressed in the mouse epididymis. Mol. Endocrinol. 17, 2138–2151 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Tulsiani, D. R. Glycan modifying enzymes in luminal fluid of rat epididymis: are they involved in altering sperm surface glycoproteins during maturation? Microsc. Res. Tech. 61, 18–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Jones, R. Sperm survival versus degradation in the mammalian epididymis: a hypothesis. Biol. Reprod. 71, 1405–1411 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Hermo, L., Dworkin, J. & Oko, R. Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa. Am. J. Anat. 183, 107–124 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Temple-Smith, P. D. Phagocytosis of sperm cytoplasmic droplets by a specialized region in the epididymis of the brushtailed possum, Trichosurus vulpecula. Biol. Reprod. 30, 707–720 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Sutovsky, P. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc. Res. Tech. 61, 88–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sutovsky, P. et al. Ubiquitin tag for sperm mitochondria. Nature 402, 371–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. St John, J. et al. Failure of elimination of paternal mitochondrial DNA in abnormal embryos. Lancet 355, 200 (2000). This paper shows that ubiquitin mediates the degradation of sperm mitochondria.

    Article  CAS  PubMed  Google Scholar 

  29. Bennetts, L. E. & Aitken, R. J. A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol. Reprod. Dev. 71, 77–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Liang, R. et al. Effects of Ni(II) and Cu(II) on DNA interaction with the N-terminal sequence of human protamine P2: enhancement of binding and mediation of oxidative DNA strand scission and base damage. Carcinogenesis 20, 893–898 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Said, T. M., Agarwal, A., Sharma, R. K., Thomas, A. J. Jr & Sikka, S. C. Impact of sperm morphology on DNA damage caused by oxidative stress induced by β-nicotinamide adenine dinucleotide phosphate. Fertil. Steril. 83, 95–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Gyllensten, U., Wharton, D., Josefsson, A. & Wilson, A. C. Paternal inheritance of mitochondrial DNA in mice see comments. Nature 352, 255–257 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. St John, J. C., Lloyd, R. E., Bowles, E. J., Thomas, E. C. & El Shourbagy, S. The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction 127, 631–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Cibelli, J. B., Campbell, K. H., Seidel, G. E., West, M. D. & Lanza, R. P. The health profile of cloned animals. Nature Biotechnol. 20, 13–14 (2002).

    Article  CAS  Google Scholar 

  35. Schwartz, M. & Vissing, J. Paternal inheritance of mitochondrial DNA. N. Engl. J. Med. 347, 576–580 (2002).

    Article  PubMed  Google Scholar 

  36. Inoue, N., Ikawa, M., Isotani, A. & Okabe, M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Kaji, K., Oda, S., Miyazaki, S. & Kudo, A. Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm–egg fusion. Dev. Biol. 247, 327–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Waterhouse, R., Ha, C. & Dveksler, G. S. Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J. Exp. Med. 195, 277–282 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bedford, J. M., Moore, H. D. & Franklin, L. E. Significance of the equatorial segment of the acrosome of the spermatozoon in eutherian mammals. Exp. Cell. Res. 119, 119–126 (1979).

    Article  CAS  PubMed  Google Scholar 

  40. Bird, G. S. et al. Mechanisms of phospholipase C-regulated calcium entry. Curr. Mol. Med. 4, 291–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Halet, G., Marangos, P., Fitzharris, G. & Carroll, J. Ca2+ oscillations at fertilization in mammals. Biochem. Soc. Trans. 31, 907–911 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Cuthbertson, K. S. & Cobbold, P. H. Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+. Nature 316, 541–542 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Cuthbertson, K. S., Whittingham, D. G. & Cobbold, P. H. Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature 294, 754–757 (1981).

    Article  CAS  PubMed  Google Scholar 

  44. Santella, L., Lim, D. & Moccia, F. Calcium and fertilization: the beginning of life. Trends Biochem. Sci. 29, 400–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Myles, D. G. Molecular mechanisms of sperm–egg membrane binding and fusion in mammals. Dev. Biol. 158, 35–45 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Swann, K. The soluble sperm oscillogen hypothesis. Zygote 1, 273–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Knott, J. G., Kurokawa, M., Fissore, R. A., Schultz, R. M. & Williams, C. J. Transgenic RNA interference reveals role for mouse sperm phospholipase Cζ in triggering Ca2+ oscillations during fertilization. Biol. Reprod. 72, 992–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Parrington, J., Lai, F. A. & Swann, K. The soluble mammalian sperm factor protein that triggers Ca2+ oscillations in eggs: evidence for expression of mRNA(s) coding for sperm factor protein(s) in spermatogenic cells. Biol. Cell 92, 267–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Saunders, C. M. et al. PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–3544 (2002). This report showed that PLCZ mRNA could induce Ca2+ oscillations when injected into the ovum.

    Article  CAS  PubMed  Google Scholar 

  50. Manandhar, G., Schatten, H. & Sutovsky, P. Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72, 2–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Schatten, G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol. 165, 299–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Simerly, C. et al. Biparental inheritance of γ-tubulin during human fertilization: molecular reconstitution of functional zygotic centrosomes in inseminated human oocytes and in cell-free extracts nucleated by human sperm. Mol. Biol. Cell 10, 2955–2969 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sutovsky, P., Navara, C. S. & Schatten, G. Fate of the sperm mitochondria, and the incorporation, conversion, and disassembly of the sperm tail structures during bovine fertilization. Biol. Reprod. 55, 1195–1205 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Lund, R. J., Chen, Z., Scheinin, J. & Lahesmaa, R. Early target genes of IL-12 and STAT4 signaling in Th cells. J. Immunol. 172, 6775–6782 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Hsu, T. & Schulz, R. A. Sequence and functional properties of Ets genes in the model organism Drosophila. Oncogene 19, 6409–6416 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Wykes, S. M., Visscher, D. W. & Krawetz, S. A. Haploid transcripts persist in mature human spermatozoa. Mol. Hum. Reprod. 3, 15–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Shalgi, R., Magnus, A., Jones, R. & Phillips, D. M. Fate of sperm organelles during early embryogenesis in the rat. Mol. Reprod. Dev. 37, 264–271 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Plusa, B. et al. The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434, 391–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Piotrowska-Nitsche, K., Perea-Gomez, A., Haraguchi, S. & Zernicka-Goetz, M. Four-cell stage mouse blastomeres have different developmental properties. Development 132, 479–490 (2005). An overview of the developmental fates and segregation of cytoplasmic constituents during early divisions.

    Article  CAS  PubMed  Google Scholar 

  60. Braun, R. E. Packaging paternal chromosomes with protamine. Nature Genet. 28, 10–12 (2001).

    CAS  PubMed  Google Scholar 

  61. Sassone-Corsi, P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296, 2176–2178 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Kierszenbaum, A. L. & Tres, L. L. Structural and transcriptional features of the mouse spermatid genome. J. Cell Biol. 65, 258–270 (1975).

    Article  CAS  PubMed  Google Scholar 

  63. Aoki, F., Worrad, D. M. & Schultz, R. M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Engel, M. L., Chaboud, A., Dumas, C. & McCormick, S. Sperm cells of Zea mays have a complex complement of mRNAs. Plant. J. 34, 697–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Betlach, C. J. & Erickson, R. P. A unique RNA species from maturing mouse spermatozoa. Nature 242, 114–115 (1973). One of the first reports highlighting the possible presence of RNA in sperm.

    Article  CAS  PubMed  Google Scholar 

  66. Paul, J. & Duerksen, J. D. Chromatin-associated RNA content of heterochromatin and euchromatin. Mol. Cell Biochem. 9, 9–16 (1975).

    Article  CAS  PubMed  Google Scholar 

  67. Rejon, E., Bajon, C., Blaize, A. & Robert, D. RNA in the nucleus of a motile plant spermatozoid: characterization by enzyme-gold cytochemistry and in situ hybridization. Mol. Reprod. Dev. 1, 49–56 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Xu, H., Swoboda, I., Bhalla, P. L. & Singh, M. B. Male gametic cell-specific gene expression in flowering plants. Proc. Natl Acad. Sci. USA 96, 2554–2558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pessot, C. A. et al. Presence of RNA in the sperm nucleus. Biochem. Biophys. Res. Commun. 158, 272–278 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Kumar, G., Patel, D. & Naz, R. K. c-MYC mRNA is present in human sperm cells. Cell. Mol. Biol. Res. 39, 111–117 (1993). A study showing the first clinical application of spermatozoal RNA profiling by differential display.

    CAS  PubMed  Google Scholar 

  71. Miller, D. et al. A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene 237, 385–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Miller, D., Tang, P. Z., Skinner, C. & Lilford, R. Differential RNA fingerprinting as a tool in the analysis of spermatozoal gene expression. Hum. Reprod. 9, 864–869 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Dadoune, J. P., Pawlak, A., Alfonsi, M. F. & Siffroi, J. P. Identification of transcripts by macroarrays, RT-PCR and in situ hybridization in human ejaculate spermatozoa. Mol. Hum. Reprod. 11, 133–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Johnson, A., Bassham, B., Lipshultz, L. I. & Lamb, D. J. A quality control system for the optimized sperm penetration assay. Fertil. Steril. 64, 832–837 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Murphy, D. B. et al. Human brain factor 1, a new member of the fork head gene family. Genomics 21, 551–557 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Moon, R. T., Brown, J. D. & Torres, M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Hayashi, S., Yang, J., Christenson, L., Yanagimachi, R. & Hecht, N. B. Mouse preimplantation embryos developed from oocytes injected with round spermatids or spermatozoa have similar but distinct patterns of early messenger RNA expression. Biol. Reprod. 69, 1170–1176 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Ziyyat, A. & Lefevre, A. Differential gene expression in pre-implantation embryos from mouse oocytes injected with round spermatids or spermatozoa. Hum. Reprod. 16, 1449–1456 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Yu, J., Hecht, N. B. & Schultz, R. M. Expression of MSY2 in mouse oocytes and preimplantation embryos. Biol. Reprod. 65, 1260–1270 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Lee, K., Haugen, H. S., Clegg, C. H. & Braun, R. E. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc. Natl Acad. Sci. USA 92, 12451–12455 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lu, L. et al. Identification and characterization of cul-3b, a novel hominine CUL-3 transcript variant. Asian J. Androl. 7, 205–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, H. et al. A spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications. J. Mol. Med. 82, 317–324 (2004).

    Article  PubMed  Google Scholar 

  83. Mao, X. M., Ma, W. L., Feng, C. Q., Zou, Y. G. & Zheng, W. L. [An initial examination of the spermatozoal gene expression profile]. Di Yi Jun Yi Da Xue Xue Bao 24, 1033–1036 (2004) (in Chinese).

    CAS  PubMed  Google Scholar 

  84. Ostermeier, G. C., Dix, D. J. & Krawetz, S. A. A bioinformatic strategy to rapidly characterize cDNA libraries. Bioinformatics 18, 949–952 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Kleene, K. C. Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet. Genome Res. 103, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Lu, C. C., Brennan, J. & Robertson, E. J. From fertilization to gastrulation: axis formation in the mouse embryo. Curr. Opin. Genet. Dev. 11, 384–392 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Bashirullah, A., Cooperstock, R. L. & Lipshitz, H. D. Spatial and temporal control of RNA stability. Proc. Natl Acad. Sci. USA 98, 7025–7028 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Siffroi, J. P. & Dadoune, J. P. Accumulation of transcripts in the mature human sperm nucleus: implication of the haploid genome in a functional role. Ital. J. Anat. Embryol. 106, 189–197 (2001).

    CAS  PubMed  Google Scholar 

  89. Pittoggi, C. et al. Specific localization of transcription factors in the chromatin of mouse mature spermatozoa. Mol. Reprod. Dev. 60, 97–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Herrada, G. & Wolgemuth, D. J. The mouse transcription factor Stat4 is expressed in haploid male germ cells and is present in the perinuclear theca of spermatozoa. J. Cell Sci. 110, 1543–1553 (1997). The authors discuss the creation of a parthenogenetic mouse.

    Article  CAS  PubMed  Google Scholar 

  91. Kono, T. et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 428, 860–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Ulbright, T. M. Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Mod. Pathol. 18 (Suppl. 2), 61–79 (2005).

    Article  Google Scholar 

  93. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Young, L. E. & Beaujean, N. DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim. Reprod. Sci. 82–83, 61–78 (2004).

  95. Lyle, R. et al. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nature Genet. 25, 19–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Vu, T. H., Li, T. & Hoffman, A. R. Promoter-restricted histone code, not the differentially methylated DNA regions or antisense transcripts, marks the imprinting status of IGF2R in human and mouse. Hum. Mol. Genet. 13, 2233–2245 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Oudejans, C. B. et al. Allelic IGF2R repression does not correlate with expression of antisense RNA in human extraembryonic tissues. Genomics 73, 331–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, C. G. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA 101, 9740–9744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kleene, K. C. Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells. Dev. Biol. 277, 16–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Cross, J. C., Werb, Z. & Fisher, S. J. Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–1518 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Forbes, A. & Lehmann, R. Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125, 679–690 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Nakamura, A., Amikura, R., Mukai, M., Kobayashi, S. & Lasko, P. F. Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science 274, 2075–2079 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Barker, D. J. Rise and fall of Western diseases. Nature 338, 371–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  106. Widdowson, E. M. & McCance, R. A. A review: new thoughts on growth. Pediatr. Res. 9, 154–156 (1975).

    Article  CAS  PubMed  Google Scholar 

  107. Waterland, R. A. & Jirtle, R. L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20, 63–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Kramer, J. A. & Krawetz, S. A. RNA in spermatozoa: implications for the alternative haploid genome. Mol. Hum. Reprod. 3, 473–478 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Miller, D. RNA in the ejaculate spermatozoon: a window into molecular events in spermatogenesis and a record of the unusual requirements of haploid gene expression and post-meiotic equilibration. Mol. Hum. Reprod. 3, 669–676 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Rockett, J. C. & Dix, D. J. DNA arrays: technology, options and toxicological applications. Xenobiotica 30, 155–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Cho, C. et al. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nature Genet. 28, 82–86 (2001).

    CAS  PubMed  Google Scholar 

  112. Bauer, M. & Patzelt, D. Protamine mRNA as molecular marker for spermatozoa in semen stains. Int. J. Legal Med. 117, 175–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Moldenhauer, J. S., Ostermeier, G. C., Johnson, A., Diamond, M. P. & Krawetz, S. A. Diagnosing male factor infertility using microarrays. J. Androl. 24, 783–789 (2003).

    Article  PubMed  Google Scholar 

  114. Lambard, S. et al. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol. Hum. Reprod. 10, 535–541 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Carlsen, E., Giwercman, A., Keiding, N. & Skakkebaek, N. E. Evidence for decreasing quality of semen during past 50 years. British Med. J. 305, 609–613 (1992).

    Article  CAS  Google Scholar 

  116. Kelce, W. R. & Wilson, E. M. Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J. Mol. Med. 75, 198–207 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Pajarinen, J., Laippala, P., Penttila, A. & Karhunen, P. J. Incidence of disorders of spermatogenesis in middle aged finnish men, 1981–91: two necropsy series. British Med. J. 314, 13–18 (1997).

    Article  CAS  Google Scholar 

  118. Parazzini, F., Bortolotti, A. & Colli, E. Declining sperm count and fertility in males: an epidemiological controversy. Arch. Androl. 41, 27–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Harrison, P. T., Holmes, P. & Humfrey, C. D. Reproductive health in humans and wildlife: are adverse trends associated with environmental chemical exposure? Sci. Total Environ. 205, 97–106 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Skakkebaek, N. E. et al. Germ cell cancer and disorders of spermatogenesis: an environmental connection? Apmis 106, 3–11; discussion 12 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Toppari, J. et al. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect. 104 (Suppl. 4), 741–803 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Aitken, R. J. & Clarkson, J. S. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil. 81, 459–469 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Bonde, J. P. The risk of male subfecundity attributable to welding of metals. Studies of semen quality, infertility, fertility, adverse pregnancy outcome and childhood malignancy. Int. J. Androl. 16 (Suppl. 1), 1–29 (1993).

    Article  PubMed  Google Scholar 

  124. Bujan, L. [Environment and spermatogenesis]. Contracept. Fertil. Sex 26, 39–48 (1998) (in French).

    CAS  PubMed  Google Scholar 

  125. Hruska, K. S., Furth, P. A., Seifer, D. B., Sharara, F. I. & Flaws, J. A. Environmental factors in infertility. Clin. Obstet. Gynecol. 43, 821–829 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Keating, J., Grundy, C. E., Fivey, P. S., Elliott, M. & Robinson, J. Investigation of the association between the presence of cytoplasmic residues on the human sperm midpiece and defective sperm function. J. Reprod. Fertil. 110, 71–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Lindbohm, M. L. Effects of occupational solvent exposure on fertility. Scand. J. Work Environ. Health 25 (Suppl. 1), 44–46 (1999).

    CAS  PubMed  Google Scholar 

  128. Telisman, S. et al. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ. Health Perspect. 108, 45–53 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bush, B., Bennett, A. H. & Snow, J. T. Polychlorobiphenyl congeners, p, p′-DDE, and sperm function in humans. Arch. Environ. Contam. Toxicol. 15, 333–341 (1986).

    Article  CAS  PubMed  Google Scholar 

  130. Tielemans, E., van Kooij, R., te Velde, E. R., Burdorf, A. & Heederik, D. Pesticide exposure and decreased fertilisation rates in vitro. Lancet 354, 484–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Goldsmith, J. R., Potashnik, G. & Israeli, R. Reproductive outcomes in families of DBCP-exposed men. Arch. Environ. Health 39, 85–89 (1984).

    Article  CAS  PubMed  Google Scholar 

  132. Potashnik, G. A four-year reassessment of workers with dibromochloropropane-induced testicular dysfunction. Andrologia 15, 164–170 (1983).

    Article  CAS  PubMed  Google Scholar 

  133. Potashnik, G., Ben-Aderet, N., Israeli, R., Yanai-Inbar, I. & Sober, I. Suppressive effect of 1,2-dibromo-3-chloropropane on human spermatogenesis. Fertil. Steril. 30, 444–447 (1978).

    Article  CAS  PubMed  Google Scholar 

  134. Potashnik, G., Goldsmith, J. & Insler, V. Dibromochloropropane-induced reduction of the sex-ratio in man. Andrologia 16, 213–218 (1984).

    Article  CAS  PubMed  Google Scholar 

  135. Potashnik, G. & Yanai-Inbar, I. Dibromochloropropane (DBCP): an 8-year reevaluation of testicular function and reproductive performance. Fertil. Steril. 47, 317–323 (1987).

    Article  CAS  PubMed  Google Scholar 

  136. Rockett, J. C. et al. Surrogate tissue analysis: monitoring toxicant exposure and health status of inaccessible tissues through the analysis of accessible tissues and cells. Toxicol. Appl. Pharmacol. 194, 189–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Moline, J. M. et al. Exposure to hazardous substances and male reproductive health: a research framework. Environ. Health Perspect. 108, 803–813 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Osmanagaoglu, K. et al. Cumulative delivery rates after intracytoplasmic sperm injection: 5 year follow-up of 498 patients. Hum. Reprod. 14, 2651–2655 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Tarlatzis, B. C. & Bili, H. Survey on intracytoplasmic sperm injection: report from the ESHRE ICSI Task Force. European Society of Human Reproduction and Embryology. Hum. Reprod. 13 (Suppl. 1), 165–177 (1998). A paper that shows the use of surrogate tissues, including sperm, as biomarkers.

    Article  PubMed  Google Scholar 

  140. Kimmins, S. & Sassone-Corsi, P. Chromatin remodelling and epigenetic features of germ cells. Nature 434, 583–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Meistrich, M. L., Mohapatra, B., Shirley, C. R. & Zhao, M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111, 483–488 (2003).

    Article  PubMed  Google Scholar 

  142. Zhao, M. et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 38, 200–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Bench, G. S., Friz, A. M., Corzett, M. H., Morse, D. H. & Balhorn, R. DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry 23, 263–271 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Wykes, S. M. & Krawetz, S. A. The structural organization of sperm chromatin. J. Biol. Chem. 278, 29471–29477 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Gatewood, J. M., Cook, G. R., Balhorn, R., Bradbury, E. M. & Schmid, C. W. Sequence-specific packaging of DNA in human sperm chromatin. Science 236, 962–964 (1987).

    Article  CAS  PubMed  Google Scholar 

  146. McCarthy, S. & Ward, W. S. Functional aspects of mammalian sperm chromatin. Hum. Fertil. (Camb.) 2, 56–60 (1999).

    Article  Google Scholar 

  147. Kramer, J. A., McCarrey, J. R., Djakiew, D. & Krawetz, S. A. Human spermatogenesis as a model to examine gene potentiation. Mol. Reprod. Dev. 56, 254–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Kramer, J. A. & Krawetz, S. A. Nuclear matrix interactions within the sperm genome. J. Biol. Chem. 271, 11619–11622 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Szczygiel, M. A. & Ward, W. S. Combination of dithiothreitol and detergent treatment of spermatozoa causes paternal chromosomal damage. Biol. Reprod. 67, 1532–1537 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Ward, W. S., Kimura, Y. & Yanagimachi, R. An intact sperm nuclear matrix may be necessary for the mouse paternal genome to participate in embryonic development. Biol. Reprod. 60, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Perreault, S. D., Barbee, R. R. & Slott, V. L. Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev. Biol. 125, 181–186 (1988). This study showed that sperm nuclear matrix might be necessary for zygotic development.

    Article  CAS  PubMed  Google Scholar 

  152. Burns, K. H. et al. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300, 633–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Trougakos, I. P. & Gonos, E. S. Clusterin/apolipoprotein J in human aging and cancer. Int. J. Biochem. Cell Biol. 34, 1430–1448 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Wong, P. et al. Molecular characterization of human TRPM-2/clusterin, a gene associated with sperm maturation, apoptosis and neurodegeneration. Eur. J. Biochem. 221, 917–925 (1994).

    Article  CAS  PubMed  Google Scholar 

  155. Minshall, N., Thom, G. & Standart, N. A conserved role of a DEAD box helicase in mRNA masking. RNA 7, 1728–1742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the Michigan Economic Development Corporation and the Michigan Technology Tri Corridor, USA, the US National Institutes of Health and the Department of Obstetrics and Gynecology, Wayne State University, USA, for their support of this research programme. I would also like to thank many colleagues who have contributed to these studies and D.R. Armant of Wayne State University and P. Sutovsky of the University of Missouri-Columbia, USA, for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez gene

FOXG1B

H19

Igf2

IGF2R

PRM1

PRM2

WNT5A

Omim

cryptorchidism

testicular cancer

Swiss-Prot

CD9

PLCZ

STAT4

FURTHER INFORMATION

Stephen Krawetz's laboratory

Glossary

TRANSITION PROTEIN

The intermediary DNA packaging protein that replaces the histones in preparation for replacement and chromatin condensation by the protamines.

TOROID STRUCTURE

A thick ring-shaped structure that is formed by the layering of the protamine and interconnecting of these bound sheets of DNA through a series of protamine disulphide bonds.

EPIDIDYMIS

An elongated, highly convoluted tubular structure that stores the sperm as they mature along the caput, the corpus and then the cauda region that leads to the vas deferens.

SERTOLI CELLS

Cells found in the seminiferous tubules that support and nurture the sperm cells.

PERINUCLEAR THECA

A proteinaceous case or sheath that encompasses the male germ-cell nucleus.

CAPUT

The upper region or head of the epididymis.

CAUDA

As sperm mature they reach the cauda region of the epididymis that leads to the vas deferens.

HOMOPLASMY

The situation in which the sequence of every copy of mitochondrial DNA within a cell is identical at any given nucleotide position.

HETEROPLASMY

Literally, this is the 'heterogeneity of the cytoplasm'. The situation in which there is a mixture of two (or more) mitochondrial genotypes within a cell.

ZONA PELLUCIDA

The thick glycoprotein coat of the oocyte, which overlies the oocyte plasma membrane.

ACROSOME REACTION

Having achieved capacitation (in other words, fertilization competancy) through the female reproductive tract, the sperm's membrane is destabilized so that it can bind to the zona pellucida of the ovum. To penetrate the zona pellucida, the sperm's acrosome (a large secretory granule) releases its protease store. As the sperm traverse towards the perivitelline space, the anterior surface of its head is removed, revealing the inner acrosomal membrane.

IZUMO

An immunoglobulin-like sperm plasma-membrane protein that is required for sperm–oocyte fusion.

TETRASPANIN FAMILY

A large family of cell-surface proteins that can form complexes with other tetraspanins and/or cell-surface proteins and might regulate cell-surface receptor trafficking.

CENTRIOLES

Cellular organelle pairs that organize the mitotic spindle at opposite sides of the nucleus during cell division.

DIFFERENTIAL DISPLAY

The high-resolution electrophoretic comparison of multiple RNAs, usually as cDNA or PCR products.

SPERMIOGENESIS

The process by which a spermatid differentiates into a mature sperm.

RIBONUCLEOPROTEIN PARTICLES

RNAs coated with various proteins that can both protect the nacent RNA transcript from degradation and/or modulate translation.

ANIMAL POLE

The section of the ovum that contains the nucleus and the majority of the cytoplasm.

TERATOMA OR DERMOID CYST

A structure that develops from a totipotent primary oocyte. Such structures usually contain a wide range of tissues; for example, hair, teeth and bone.

FETAL ORIGINS OF ADULT DISEASE

The hypothesis that events, factors or the intrauterine environment modify the developmental programme to predispose the individual to chronic disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krawetz, S. Paternal contribution: new insights and future challenges. Nat Rev Genet 6, 633–642 (2005). https://doi.org/10.1038/nrg1654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing