Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phylogenomics and the reconstruction of the tree of life

Key Points

  • Understanding phylogenetic relationships among organisms is a prerequisite of evolutionary studies, as contemporary species all share a common history through their ancestry.

  • The wealth of sequence data generated by large-scale genome projects is transforming phylogenetics — the reconstruction of evolutionary history — into phylogenomics.

  • Traditional sequence-based methods of phylogenetic reconstruction (supermatrix and supertree approaches) can also be used at the genome level.

  • New methods based on whole-genome features are also currently being developed to infer phylogenomic trees.

  • Recent studies have revealed the potential of phylogenomic methods for answering long-standing phylogenetic questions.

  • The supermatrix approach that analyses the concatenation of multiple gene sequences is the best-characterized method. Its potential relies on the increased resolving power provided by the use of a large number of sequence positions, which reduces the sampling error.

  • Including large amounts of data in phylogenomic analyses increases the possibility of obtaining highly supported but incorrect phylogenetic results that are due to inconsistency — that is, the convergence towards an incorrect solution as more data are added.

  • Inconsistency arises because current phylogenetic reconstruction methods do not account for the full complexity of the molecular evolutionary process in their underlying assumptions.

  • The risks of inconsistency in phylogenomics analyses can be reduced by the development of better models of sequence evolution, by the critical evaluation of data properties and by the use of only the most reliable characters.

  • Corroboration of phylogenomic results is an important issue, as whole genomes represent the ultimate source of phylogenetically informative characters. Sources of corroboration include the congruence of results obtained using different phylogenomic methods, and their robustness to taxon sampling.

  • The very nature of the evolutionary process and the limitations of current phylogenetic reconstruction methods imply that parts of the tree of life might prove difficult, if not impossible, to resolve with confidence.

Abstract

As more complete genomes are sequenced, phylogenetic analysis is entering a new era — that of phylogenomics. One branch of this expanding field aims to reconstruct the evolutionary history of organisms on the basis of the analysis of their genomes. Recent studies have demonstrated the power of this approach, which has the potential to provide answers to several fundamental evolutionary questions. However, challenges for the future have also been revealed. The very nature of the evolutionary history of organisms and the limitations of current phylogenetic reconstruction methods mean that part of the tree of life might prove difficult, if not impossible, to resolve with confidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenomics and the tree of life.
Figure 2: 'Garbage in, garbage out': inconsistency and the use of reliable characters.
Figure 3: Phylogenomics and the resolution of phylogenetic trees.

Similar content being viewed by others

References

  1. Darwin, C. The Origin of Species by Means of Natural Selection (Murray, London, 1859).

    Google Scholar 

  2. Haeckel, E. Generelle Morphologie der Organismen: Allgemeine Grundzüge der Organischen Formen-Wissenschaft, Mechanisch Begründet durch die von Charles Darwin Reformirte Descendenz–Theorie (Georg Reimer, Berlin, 1866) (in German).

    Book  Google Scholar 

  3. Van Niel, C. B. in Perspectives and Horizons in Microbiology (ed. Waksman, S. S.) 3–12 (Rutgers Univ. Press, New Brunswick, 1955).

    Google Scholar 

  4. Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965).

    Article  CAS  PubMed  Google Scholar 

  5. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eisen, J. A. & Fraser, C. M. Phylogenomics: intersection of evolution and genomics. Science 300, 1706–1707 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Philippe, H. & Laurent, J. How good are deep phylogenetic trees? Curr. Opin. Genet. Dev. 8, 616–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rokas, A. & Holland, P. W. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gribaldo, S. & Philippe, H. Ancient phylogenetic relationships. Theor. Popul. Biol. 61, 391–408 (2002).

    Article  PubMed  Google Scholar 

  10. Holder, M. & Lewis, P. O. Phylogeny estimation: traditional and Bayesian approaches. Nature Rev. Genet. 4, 275–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Qiu, Y. L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404–407 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Moreira, D., Le Guyader, H. & Philippe, H. The origin of red algae: implications for the evolution of chloroplasts. Nature 405, 69–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Madsen, O. et al. Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610–614 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Murphy, W. J. et al. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Blair, J. E., Ikeo, K., Gojobori, T. & Hedges, S. B. The evolutionary position of nematodes. BMC Evol. Biol. 2, 7 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bapteste, E. et al. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc. Natl Acad. Sci. USA 99, 1414–1419 (2002). The first phylogenomic study based on the supermatrix approach that includes more than 100 genes for a relatively broad taxon sampling of eukaryotes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lerat, E., Daubin, V. & Moran, N. A. From gene trees to organismal phylogeny in prokaryotes: the case of the γ-Proteobacteria. PLoS Biol. 1, e19 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804 (2003). An empirical study on the phylogenomics of yeasts, which shows that, for the same number of positions, a robust phylogenetic tree is recovered more rapidly with randomly selected positions than with entire genes.

    Article  CAS  PubMed  Google Scholar 

  20. Philippe, H. et al. Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol. Biol. Evol. 21, 1740–1752 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res. 14, 29–36 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Driskell, A. C. et al. Prospects for building the tree of life from large sequence databases. Science 306, 1172–1174 (2004). References 20 and 22 demonstrate the robustness of the supermatrix approach to a surprisingly high amount of missing data in phylogenomic analyses.

    Article  CAS  PubMed  Google Scholar 

  23. Philippe, H., Lartillot, N. & Brinkmann, H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa and Protostomia. Mol. Biol. Evol. 9 February 2005 (10.1093/molbev/msi111). This study demonstrates the impact of the long-branch attraction artefact in phylogenomics and provides evidence for the new animal phylogeny based on relatively large species sampling.

  24. Lecointre, G., Philippe, H., Le, H. L. V. & Le Guyader, H. Species sampling has a major impact on phylogenetic inference. Mol. Phylogenet. Evol. 2, 205–224 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Poe, S. & Swofford, D. L. Taxon sampling revisited. Nature 398, 299–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Hillis, D. M., Pollock, D. D., McGuire, J. A. & Zwickl, D. J. Is sparse taxon sampling a problem for phylogenetic inference? Syst. Biol. 52, 124–126 (2003).

    Article  PubMed  Google Scholar 

  28. Rosenberg, M. S. & Kumar, S. Taxon sampling, bioinformatics, and phylogenomics. Syst. Biol. 52, 119–124 (2003). References 27 and 28 present a recent exchange on the relative importance of character and taxon sampling for phylogenetic inference.

    Article  PubMed  Google Scholar 

  29. Philippe, H. Rodent monophyly: pitfalls of molecular phylogenies. J. Mol. Evol. 45, 712–715 (1997).

    CAS  PubMed  Google Scholar 

  30. Lin, Y. -H. et al. Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol. Biol. Evol. 19, 2060–2070 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Philip, G. K., Creevey, C. J. & McInerney, J. O. The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Mol. Biol. Evol. 9 February 2005 (10.1093/molbev/msi102).

  32. Sanderson, M. J., Driskell, A. C., Ree, R. H., Eulenstein, O. & Langley, S. Obtaining maximal concatenated phylogenetic data sets from large sequence databases. Mol. Biol. Evol. 20, 1036–1042 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Kluge, A. G. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38, 7–25 (1989).

    Article  Google Scholar 

  34. Felsenstein, J. Inferring Phylogenies (Sinauer Associates, Sunderland, Massachusetts, 2004).

    Google Scholar 

  35. Gatesy, J., Matthee, C., DeSalle, R. & Hayashi, C. Resolution of a supertree/supermatrix paradox. Syst. Biol. 51, 652–664 (2002).

    Article  PubMed  Google Scholar 

  36. Wiens, J. J. Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol. 52, 528–538 (2003).

    Article  PubMed  Google Scholar 

  37. Bininda-Emonds, O. R. P., Gittleman, J. L. & Steel, M. A. The (super)tree of life: procedures, problems, and prospects. Annu. Rev. Ecol. Syst. 33, 265–289 (2002).

    Article  Google Scholar 

  38. Baum, B. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992).

    Article  Google Scholar 

  39. Ragan, M. A. Phylogenetic inference based on matrix representation of trees. Mol. Phylogenet. Evol. 1, 53–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Bininda-Emonds, O. R. P. The evolution of supertrees. Trends Ecol. Evol. 19, 315–322 (2004).

    Article  PubMed  Google Scholar 

  41. Liu, F. G. et al. Molecular and morphological supertrees for eutherian (placental) mammals. Science 291, 1786–1789 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Daubin, V., Gouy, M. & Perriére, G. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res. 12, 1080–1090 (2002). The first application of a supertree method in phylogenomics showing its usefulness for reconstructing bacterial phylogeny in the presence of horizontal gene transfer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gatesy, J., Baker, R. H. & Hayashi, C. Inconsistencies in arguments for the supertree approach: supermatrices versus supertrees of Crocodylia. Syst. Biol. 53, 342–355 (2004).

    Article  PubMed  Google Scholar 

  44. Salamin, N., Hodkinson, T. R. & Savolainen, V. Building supertrees: an empirical assessment using the grass family (Poaceae). Syst. Biol. 51, 136–150 (2002).

    Article  PubMed  Google Scholar 

  45. Bininda-Emonds, O. R. P. Trees versus characters and the supertree/supermatrix 'paradox'. Syst. Biol. 53, 356–359 (2004).

    Article  PubMed  Google Scholar 

  46. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence data sets. Nature Genet. 28, 281–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Brochier, C., Bapteste, E., Moreira, D. & Philippe, H. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet. 18, 1–5 (2002). A comprehensive study of bacterial phylogeny that is based on the supermatrix approach, using statistical methods to detect and exclude genes that are probably affected by horizontal transfer.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Z. On the best evolutionary rate for phylogenetic analysis. Syst. Biol. 47, 125–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Wolf, Y. I., Rogozin, I. B., Grishin, N. V. & Koonin, E. V. Genome trees and the tree of life. Trends Genet. 18, 472–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet. 21, 108–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Tekaia, F., Lazcano, A. & Dujon, B. The genomic tree as revealed from whole proteome comparisons. Genome Res. 9, 550–557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Clarke, G. D., Beiko, R. G., Ragan, M. A. & Charlebois, R. L. Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized BLASTP scores. J. Bacteriol. 184, 2072–2080 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Korbel, J. O., Snel, B., Huynen, M. A. & Bork, P. SHOT: a web server for the construction of genome phylogenies. Trends Genet. 18, 158–162 (2002). This paper presents reconstruction of prokaryotic phylogenies based on gene content and the conservation of gene pairs, with a critical view on the impact of horizontal gene transfer on their accuracy.

    Article  CAS  PubMed  Google Scholar 

  54. Dutilh, B. E., Huynen, M. A., Bruno, W. J. & Snel, B. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J. Mol. Evol. 58, 527–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Lin, J. & Gerstein, M. Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res. 10, 808–818 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L. & Koonin, E. V. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1, 8 (2001). A study of bacterial phylogenomics using five independent reconstruction methods to corroborate the emergence of a recurrent phylogenetic pattern.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fitz-Gibbon, S. T. & House, C. H. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27, 4218–4222 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. House, C. H. & Fitz-Gibbon, S. T. Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J. Mol. Evol. 54, 539–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. House, C. H., Runnegar, B. & Fitz-Gibbon, S. T. Geobiological analysis using whole genome-based tree building applied to the Bacteria, Archaea, and Eukarya. Geobiology 1, 15–26 (2003).

    Article  CAS  Google Scholar 

  60. Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol. 21, 681–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Gu, X. & Zhang, H. Genome phylogenetic analysis based on extended gene contents. Mol. Biol. Evol. 21, 1401–1408 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Huson, D. H. & Steel, M. Phylogenetic trees based on gene content. Bioinformatics 20, 2044–2049 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Sankoff, D. et al. Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Natl Acad. Sci. USA 89, 6575–6579 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hannenhalli, S. & Pevzner, P. A. Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46, 1–27 (1999).

    Article  Google Scholar 

  65. Blanchette, M., Kunisawa, T. & Sankoff, D. Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol. 49, 193–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Moret, B., Tang, J. & Warnow, T. in Mathematics of Evolution and Phylogeny (ed. Gascuel, O.) 321–352 (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  67. Koski, L. B. & Golding, G. B. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52, 540–542 (2001).

    Article  Google Scholar 

  68. Philippe, H. & Douady, C. J. Horizontal gene transfer and phylogenetics. Curr. Opin. Microbiol. 6, 498–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Fitch, W. M. Distinguishing homologous from analogous proteins. Syst. Zool. 19, 99–113 (1970).

    Article  CAS  PubMed  Google Scholar 

  70. Stanhope, M. J. et al. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411, 940–944 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Sicheritz-Ponten, T. & Andersson, S. G. A phylogenomic approach to microbial evolution. Nucleic Acids Res. 29, 545–552 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Campbell, A., Mrázek, J. & Karlin, S. Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc. Natl Acad. Sci. USA 96, 9184–9189 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Edwards, S. V., Fertil, B., Giron, A. & Deschavanne, P. J. A genomic schism in birds revealed by phylogenetic analysis of DNA strings. Syst. Biol. 51, 599–613 (2002).

    Article  PubMed  Google Scholar 

  74. Pride, D. T., Meinersmann, R. J., Wassenaar, T. M. & Blaser, M. J. Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res. 13, 145–158 (2003). A study showing that phylogenetic signal can be retrieved from the distribution of oligonucleotides in prokaryote genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qi, J., Wang, B. & Hao, B. I. Whole proteome prokaryote phylogeny without sequence alignment: a K-string composition approach. J. Mol. Evol. 58, 1–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Nikaido, M., Rooney, A. P. & Okada, N. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippopotamuses are the closest extant relatives of whales. Proc. Natl Acad. Sci. USA 96, 10261–10266 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van Dijk, M. A. et al. Protein sequence signatures support the African clade of mammals. Proc. Natl Acad. Sci. USA 98, 188–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Venkatesh, B., Erdmann, M. V. & Brenner, S. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc. Natl Acad. Sci. USA 98, 11382–11387 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Philippe, H. et al. Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc. R. Soc. Lond. B 267, 1213–1221 (2000).

    Article  CAS  Google Scholar 

  80. Stechmann, A. & Cavalier-Smith, T. Rooting the eukaryote tree by using a derived gene fusion. Science 297, 89–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Snel, B., Bork, P. & Huynen, M. Genome evolution. Gene fusion versus gene fission. Trends Genet. 16, 9–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Bapteste, E. & Philippe, H. The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol. Biol. Evol. 19, 972–977 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Krzywinski, J. & Besansky, N. J. Frequent intron loss in the White gene: a cautionary tale for phylogeneticists. Mol. Biol. Evol. 19, 362–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Pecon-Slattery, J., Pearks Wilkerson, A. J., Murphy, W. J. & O'Brien, S, J. Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family Felidae as a species tree. Mol. Biol. Evol. 21, 2299–2309 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Amrine-Madsen, H., Koepfli, K. P., Wayne, R. K. & Springer, M. S. A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol. Phylogenet. Evol. 28, 225–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Reyes, A. et al. Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Mol. Biol. Evol. 21, 397–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Soltis, P. S., Soltis, D. E. & Chase, M. W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402, 402–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Barkman, T. J. et al. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl Acad. Sci. USA 97, 13166–13171 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409, 618–622 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Soltis, D. E., Soltis, P. S. & Zanis, M. J. Phylogeny of seed plants based on evidence from eight genes. Am. J. Bot. 89, 1670–1681 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Zanis, M. J., Soltis, D. E., Soltis, P. S., Mathews, S. & Donoghue, M. J. The root of the angiosperms revisited. Proc. Natl Acad. Sci. USA 99, 6848–6853 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Savolainen, V. & Chase, M. W. A decade of progress in plant molecular phylogenetics. Trends Genet. 19, 717–724 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. King, N. & Carroll, S. B. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc. Natl Acad. Sci. USA 98, 15032–15037 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lang, B. F., O'Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Simpson, A. G. & Roger, A. J. The real 'kingdoms' of eukaryotes. Curr. Biol. 14, R693–R696 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Esser, C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21, 1643–1660 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2129 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, S., Doolittle, R. F. & Bourne, P. E. Phylogeny determined by protein domain content. Proc. Natl Acad. Sci. USA 102, 373–378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Matte-Tailliez, O., Brochier, C., Forterre, P. & Philippe, H. Archaeal phylogeny based on ribosomal proteins. Mol. Biol. Evol. 19, 631–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410 (1978).

    Article  Google Scholar 

  105. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article  PubMed  Google Scholar 

  106. Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Huelsenbeck, J. P. Performance of phylogenetic methods in simulation. Syst. Biol. 44, 17–48 (1995).

    Article  Google Scholar 

  108. Swofford, D. L. et al. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol. 50, 525–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Kolaczkowski, B. & Thornton, J. W. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431, 980–984 (2004). A simulation study showing that the performance of current likelihood-based methods of phylogenetic reconstruction are noticeably affected by heterotachy.

    Article  CAS  PubMed  Google Scholar 

  110. Whelan, S., Lio, P. & Goldman, N. Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet. 17, 262–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Steel, M. A., Lockhart, P. J. & Penny, D. Confidence in evolutionary trees from biological sequence data. Nature 364, 440–442 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Hendy, M. & Penny, D. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38, 297–309 (1989).

    Article  Google Scholar 

  113. Lopez, P., Casane, D. & Philippe, H. Heterotachy, an important process of protein evolution. Mol. Biol. Evol. 19, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Mathews, S. & Donoghue, M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286, 947–950 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Goremykin, V. V., Hirsch-Ernst, K. I., Wölfl, S. & Hellwig, F. H. Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol. Biol. Evol. 20, 1499–1505 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Goremykin, V. V., Hirsch-Ernst, K. I., Wölfl, S. & Hellwig, F. H. The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol. Biol. Evol. 21, 1445–1454 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Soltis, D. E. et al. Genome-scale data, angiosperm relationships, and 'ending incongruence': a cautionary tale in phylogenetics. Trends Plant Sci. 9, 477–483 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Stefanovic, S., Rice, D. W. & Palmer, J. D. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evol. Biol. 4, 35 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Adoutte, A. et al. The new animal phylogeny: reliability and implications. Proc. Natl Acad. Sci. USA 97, 4453–4456 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Halanych, K. M. The new view of animal phylogeny. Annu. Rev. Ecol. Evol. Syst. 35, 229–256 (2004).

    Article  Google Scholar 

  121. Aguinaldo, A. M. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Dopazo, H., Santoyo, J. & Dopazo, J. Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics 20 (Suppl. 1), I116–I121 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Keeling, P. J. & Fast, N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Sullivan, J. & Swofford, D. L. Should we use model-based methods for phylogenetic inference when we know that assumptions about among-site rate variation and nucleotide substitution pattern are violated? Syst. Biol. 50, 723–729 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Huelsenbeck, J. P. The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Mol. Biol. Evol. 12, 843–849 (1995).

    CAS  PubMed  Google Scholar 

  126. Gaut, B. S. & Lewis, P. O. Success of maximum likelihood phylogeny inference in the four-taxon case. Mol. Biol. Evol. 12, 152–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Siepel, A. & Haussler, D. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol. Biol. Evol. 21, 413–428 (2004).

    Google Scholar 

  128. Whelan, S. & Goldman, N. Estimating the frequency of events that cause multiple-nucleotide changes. Genetics 167, 2027–2043 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Robinson, D. M., Jones, D. T., Kishino, H., Goldman, N. & Thorne, J. L. Protein evolution with dependence among codons due to tertiary structure. Mol. Biol. Evol. 28, 1692–1704 (2003).

    Article  CAS  Google Scholar 

  130. Rodrigue, N., Lartillot, N., Bryant, D. & Philippe, H. Site interdependence attributed to tertiary structure in amino acid sequence evolution. Gene 347, 207–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Galtier, N. & Gouy, M. Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol. Biol. Evol. 15, 871–879 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Foster, P. G. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004).

    Article  PubMed  Google Scholar 

  133. Fitch, W. M. Rate of change of concomitantly variable codons. J. Mol. Evol. 1, 84–96 (1971).

    Article  CAS  PubMed  Google Scholar 

  134. Tuffley, C. & Steel, M. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147, 63–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. 53, 711–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Galtier, N. Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol. Biol. Evol. 18, 866–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Huelsenbeck, J. P. Testing a covariotide model of DNA substitution. Mol. Biol. Evol. 19, 698–707 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Pagel, M. & Meade, A. A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Syst. Biol. 53, 571–581 (2004). References 138 and 139 explore promising mixture models to handle sequences that evolved under heterogeneous conditions.

    Article  PubMed  Google Scholar 

  140. Woese, C. R., Achenbach, L., Rouviere, P. & Mandelco, L. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol. 14, 364–371 (1991).

    Article  CAS  PubMed  Google Scholar 

  141. Delsuc, F., Phillips, M. J. & Penny, D. Comment on 'Hexapod origins: Monophyletic or paraphyletic?' Science 301, 1482 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Phillips, M. J. & Penny, D. The root of the mammalian tree inferred from whole mitochondrial genomes. Mol. Phylogenet. Evol. 28, 171–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Gibson, A., Gowri-Shankar, V., Higgs, P. G. & Rattray, M. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol. Biol. Evol. 22, 251–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Phillips, M. J., Delsuc, F. & Penny, D. Genome-scale phylogeny and the detection of systematic biases. Mol. Biol. Evol. 21, 1455–1458 (2004). A cautionary tale for phylogenomic studies from the empirical demonstration that compositional bias can lead to inconsistency of some distance methods.

    Article  CAS  PubMed  Google Scholar 

  145. Lopez, P., Forterre, P. & Philippe, H. The root of the tree of life in the light of the covarion model. J. Mol. Evol. 49, 496–508 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A. & Baguna, J. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283, 1919–1923 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Brinkmann, H. & Philippe, H. Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16, 817–825 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Burleigh, J. G. & Mathews, S. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. Am. J. Bot. 91, 1599–1613 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Pisani, D. Identifying and removing fast-evolving sites using compatibility analysis: an example from the Arthropoda. Syst. Biol. 53, 978–989 (2004).

    Article  PubMed  Google Scholar 

  150. Miyamoto, M. M. & Fitch, W. M. Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol. 44, 64–76 (1995).

    Article  Google Scholar 

  151. Herniou, E. A. et al. Use of whole genome sequence data to infer baculovirus phylogeny. J. Virol. 75, 8117–8126 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Philippe, H., Chenuil, A. & Adoutte, A. Can the Cambrian explosion be inferred through molecular phylogeny? Development 120, S15–S25 (1994).

    Google Scholar 

  154. Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teacher 35, 125–129 (1973).

    Article  Google Scholar 

  155. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  156. Rzhetsky, A. & Nei, M. Statistical properties of the ordinary least-squares, generalized least- squares, and minimum-evolution methods of phylogenetic inference. J. Mol. Evol. 35, 367–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  157. Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).

    Article  CAS  PubMed  Google Scholar 

  158. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Yang, Z. Maximum-likelihood models for combined analyses of multiple sequence data. J. Mol. Evol. 42, 587–596 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Pupko, T., Huchon, D., Cao, Y., Okada, N. & Hasegawa, M. Combining multiple data sets in a likelihood analysis: which models are the best? Mol. Biol. Evol. 19, 2294–2307 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Springer, M. S., Amrine, H. M., Burk, A. & Stanhope, M. J. Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Syst. Biol. 48, 65–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony and other methods (Sinauer Associates, Sunderland, Masachusetts, 2002).

    Google Scholar 

  165. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  PubMed  Google Scholar 

  166. Philippe, H. & Lopez, P. On the conservation of protein sequences in evolution. Trends Biochem. Sci. 26, 414–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Lockhart, P. J., Larkum, A. W., Steel, M., Waddell, P. J. & Penny, D. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc. Natl Acad. Sci. USA 93, 1930–1934 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Philippe, H. & Germot, A. Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol. Biol. Evol. 17, 830–834 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Inagaki, Y., Susko, E., Fast, N. M. & Roger, A. J. Covarion shifts cause a long-branch attraction artifact that unites Microsporidia and Archaebacteria in EF-1α phylogenies. Mol. Biol. Evol. 21, 1340–1349 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Kishino, H., Miyata, T. & Hasegawa, M. Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J. Mol. Evol. 31, 151–160 (1990).

    Article  CAS  Google Scholar 

  171. Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. & Douzery, E. J. P. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20, 248–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Taylor, D. J. & Piel, W. H. An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. Mol. Biol. Evol. 21, 1534–1537 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Huelsenbeck, J. P. & Rannala, B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol. 53, 904–913 (2004).

    Article  PubMed  Google Scholar 

  174. Lemmon, A. R. & Moriarty, E. C. The importance of proper model assumption in Bayesian phylogenetics. Syst. Biol. 53, 265–277 (2004).

    Article  PubMed  Google Scholar 

  175. Strimmer, K. & von Haeseler, A. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996).

    Article  CAS  Google Scholar 

  176. Roshan, U., Moret, B. M. E., Williams, T. L. & Warnow, T. in Proc. 3rd Int. IEEE Computational Systems Bioinformatics Conference (CSB, Stanford, California, 2004).

    Google Scholar 

  177. Roshan, U., Moret, B. M. E., Williams, T. L. & Warnow, T. in Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. (ed. Bininda-Emonds, O. R. P.) 301–328 (Springer, Berlin, 2004).

    Book  Google Scholar 

  178. Cavender, J. A. & Felsenstein, J. Invariants of phylogenies in a simple case with discrete states. J. Classif. 4, 57–71 (1987).

    Article  Google Scholar 

  179. Lecointre, G., Philippe, H., Le, H. L. V. & Le Guyader, H. How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Mol. Phylogenet. Evol. 3, 292–309 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Rodrigue, N. Rodríguez-Ezpeleta and E. Douzery for critical reading of early versions of the manuscript. Constructive comments from three anonymous referees also helped to make the manuscript more accurate. We apologize to our colleagues whose relevant work has not been cited because of space limitations. The authors gratefully acknowledge the financial support provided by Génome Québec, Canada, the Canadian Research Chair and the Université de Montréal, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Philippe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Assembling the Fungal Tree of Life

Assembling the Tree of Eukaryotic Diversity — Eu-Tree

Assembling the Tree of Life — Diptera

Assembling the Tree of Life — Early Bird

Biodic web site

Blaxter Laboratory Nematode Genomics web site

Cyberinfrastructure for Phylogenetic Research (CIPRes) Project

DeepTime Project

EBI ClustalW Program

EMBL Nucleotide Sequence Database

Gblocks web site

GOLD Genomes OnLine Database

Green Plant Phylogeny Research Coordination Group — DeepGreen

Higher-Level Arthropod Phylogenomics from the Cunnigham Laboratory

NCBI BLAST

NCBI — National Center for Biotechnology Information

Nematode Genome Sequencing Center

PAUP*

PhyCom — a Phylogenetic Community

Phylogeny Programs at Joe Felsenstein's web page

PHYML

Protist EST Program (PEP)

TreeBASE

Tree of Life Web Project

Glossary

HOMOLOGOUS CHARACTERS

Homologous characters are those that are descended from a common ancestor.

PRIOR PROBABILITY

The probability of a hypothesis (or parameter value) without reference to the available data. This can be derived from first principles, or based on general knowledge or previous experiments.

NODE

Nodes of phylogenetic trees represent taxonomic units. Internal nodes (or branches) refer to hypothetical ancestors, whereas terminal nodes (or leaves) generally correspond to extant species.

INCONSISTENCY

A phylogenetic reconstruction method is statistically inconsistent if it converges towards supporting an incorrect solution with increasing confidence as more data is analysed.

HOMOPLASY

Identical character states (for example, the same nucleotide base in a DNA sequence) that are not the result of common ancestry (not homologous), but that arose independently in different ancestors by convergent mutations.

CONVERGENCE

The independent evolution of similar character states in evolutionarily distinct lineages.

REVERSAL

The independent reacquisition of the ancestral character state in a given evolutionary lineage.

HOMOLOGY

Two sequences are homologous if they share a common ancestor.

ORTHOLOGY

Two sequences are orthologous if they share a common ancestor and originated by speciation.

HEURISTIC

A method of inference that relies on educated guesses or simplifications that limit the parameter space over which solutions are searched. This approach is not guaranteed to find the correct answer.

BREAKPOINT

In the context of phylogenetic methods that are based on gene-order comparison between genomes, a breakpoint is defined when a pair of genes are adjacent in one genome but not in the other.

HORIZONTAL GENE TRANSFER

The transfer of genetic material between the genomes of two organisms, which usually belong to different species, that does not occur through parent–progeny routes.

PARALLEL GENE LOSS

The independent loss of homologous genes in evolutionary distinct lineages.

SATURATION

Mutational saturation occurs when many changes at a given position have randomized the genuine phylogenetic signal.

ROOT

The root of a phylogenetic tree represents the common ancestor of all taxa that are represented in the tree. The position of the root is often determined using an outgroup taxon to determine the order of evolution in the group of taxa of interest.

MONOPHYLY

Monophyletic taxa include all the species that are derived from a single common ancestor.

STOCHASTIC OR SAMPLING ERROR

The error in phylogenetic estimates caused by the finite length of the sequences used in the inference. As the size of the sequences increases, the magnitude of the stochastic error decreases.

SYSTEMATIC ERROR

The error in phylogenetic estimates that is due to the failure of the reconstruction method to fully account for the properties of the data.

BOOTSTRAP ANALYSIS

A type of statistical analysis used to test the reliability of specific branches in an evolutionary tree. The non-parametric bootstrap proceeds by re-sampling the original data, with replacement, to create a series of bootstrap samples of the same size as the original data. The bootstrap percentage of a node is the proportion of times that node is present in the set of trees that is constructed from the new data sets.

BAYESIAN POSTERIOR PROBABILITY

In Bayesian phylogenetics, the posterior probability of a particular node of a tree is the probability that the node is correct, which is conditional on the data and the model used in the analysis both being correct.

HETEROTACHY

The variation of evolutionary rate of a given position of a molecule through time.

MARKOV CHAIN MONTE CARLO

A computational technique for the efficient numerical calculation of likelihoods.

DISK-COVERING METHODS

A family of 'divide-and-conquer' algorithmic methods for large-scale tree reconstruction. They use graph theory to optimally partition the input dataset into small overlapping sets of closely related species, reconstruct phylogenetic trees from these subsets, and combine the subtrees into one tree for the entire set of species.

COVARION MODEL OF MOLECULAR EVOLUTION

In this model, although some sites in a macromolecule are vital to function and can never change through time, most switch between being free to evolve in some species and being invariable in others.

METAGENOMICS

The functional and sequence-based analysis of the collective microbial genomes contained in an environmental sample of uncultured organisms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6, 361–375 (2005). https://doi.org/10.1038/nrg1603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing