Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Pharmacogenetics – five decades of therapeutic lessons from genetic diversity

Abstract

Physicians have long been aware of the subtle differences in the responses of patients to medication. The recognition that a part of this variation is inherited, and therefore predictable, created the field of pharmacogenetics fifty years ago. Knowing the gene variants that cause differences among patients has the potential to allow 'personalized' drug therapy and to avoid therapeutic failure and serious side effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Appearance of the terms pharmacogenetics and pharmacogenomics in publications in PUBMED (National Library of Medicine).
Figure 2: Sir Archibald E. Garrod (1958–1936).
Figure 3: Genotype–phenotype relationships of the CYP2D6-polymorphism.

References

  1. Garrod, A. E. The incidence of alkaptonuria. A study in chemical individuality. Lancet, 1616–1620 (1902).

  2. Garrod, A. E. The inborn errors of metabolism, (Oxford Univ. Press, London, UK, 1909).

    Google Scholar 

  3. Bateson, W. Mendel's principles of heredity: A defence, (Cambridge Univ. Press, Cambridge, UK, 1902).

    Google Scholar 

  4. Garrod, A. E. The inborn factors of disease (Oxford Univ. Press, London, UK, 1931).

    Book  Google Scholar 

  5. Fox, A. L. The relationship between chemical constitution and taste. Proc. Natl Acad. Sci. USA 18, 115–120 (1932).

    Article  CAS  Google Scholar 

  6. Snyder, L. H. Studies in human inheritance IX. The inheritance of taste deficiency in man. Ohio J. Sci. 32, 436–468 (1932).

    Google Scholar 

  7. Clayman, C. B. et al. Toxicity of primaquine in Caucasians. J. Am. Med. Assoc. 149, 1563–1568 (1952).

    Article  CAS  Google Scholar 

  8. Carson, P. E., Flanagan, C. L., Ickes, C. E. & Alving, A. S. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124, 484–485 (1956).

    Article  CAS  Google Scholar 

  9. Luzatto, L., Mehta, A. & Vulliamy, M. Y. in The Metabolic and Molecular Basis of Inherited Diseases Vol. 3 (eds Scriver, C. R. et al.) 4517–4553 (McGraw–Hill Inc., New York, USA, 2001).

    Google Scholar 

  10. Lehmann, H. & Ryan, E. The familial incidence of low pseudocholinesterase level. Lancet 271, 124 (1956).

    Article  CAS  Google Scholar 

  11. Kalow, W. & Staron, N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can. J. Med. Sci. 35, 1305–1320 (1957).

    CAS  Google Scholar 

  12. Motulsky, A. Drug reactions, enzymes and biochemical genetics. JAMA 165, 835–837 (1957).

    Article  CAS  Google Scholar 

  13. Vogel, F. Moderne Probleme der Humangenetik. Ergebn. Inn. Med. Kinderheilkd. 12, 52–125 (1959).

    Google Scholar 

  14. Kalow, W. Pharmacogenetics: heredity and the response to drugs (W. B. Saunders & Co., Philadelphia, USA, 1962).

    Google Scholar 

  15. Williams, R. J. Biochemical Individuality, (John Wiley & Sons, New York, USA, 1956).

    Google Scholar 

  16. Vesell, E. S. Twin studies in pharmacogenetics. Hum. Genet. 1, (Suppl.) 19–30 (1978).

    Google Scholar 

  17. Alexanderson, B., Evans, D. A. & Sjoqvist, F. Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. Br. Med. J. 4, 764–768 (1969).

    Article  CAS  Google Scholar 

  18. Price-Evans, D. A. in Clinical and Molecular Pharmacogenetics (Cambridge Univ. Press, Cambridge, UK, 1993).

    Google Scholar 

  19. Evans, W. E. & McLeod, H. L. Pharmacogenomics — drug disposition, drug targets, and side effects. N. Engl. J. Med. 348, 538–549 (2003).

    Article  CAS  Google Scholar 

  20. Weber, W. W. Pharmacogenetics 334 (Oxford Univ. Press, Oxford, UK, 1997).

    Google Scholar 

  21. Kalow, W., Meyer, U. A. & Tyndale, R. F. Pharmacogenomics (Marcel Dekker, New York and Basel, 2001).

    Google Scholar 

  22. Brewer, G. J. Annotation: human ecology, an expanding role for the human geneticist. Am. J. Hum. Genet. 23, 92–94 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sellers, E. M., Tyndale, R. F. & Fernandes, L. C. Decreasing smoking behaviour and risk through CYP2A6 inhibition. Drug Discov. Today 8, 487–493 (2003).

    Article  CAS  Google Scholar 

  24. Meyer, U. A. & Zanger, U. M. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu. Rev. Pharmacol. Toxicol. 37, 269–296 (1997).

    Article  CAS  Google Scholar 

  25. Zanger, U. M., Raimundo, S. & Eichelbaum, M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch. Pharmacol. 369, 23–37 (2004).

    Article  CAS  Google Scholar 

  26. Smith, R. L. Introduction: human genetic variations in oxidative drug metabolism. Xenobiotica 16, 361–365 (1986).

    Article  Google Scholar 

  27. Mahgoub, A., Idle, J. R., Dring, L. G., Lancester, R. & Smith, R. L. Polymorphic hydroxylation of debrisoquine in man. Lancet 2, 584–586 (1977).

    Article  CAS  Google Scholar 

  28. Eichelbaum, M., Spannbrucker, N., Steincke, B. & Dengler, H. J. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol. 16, 183–187 (1979).

    Article  CAS  Google Scholar 

  29. Kahn, G. C., Boobis, A. R., Murray, S., Brodie, M. J. & Davies, D. S. Assay and characterisation of debrisoquine 4-hydroxylase activity of microsomal fractions of human liver. Br. J. Clin. Pharmacol. 13, 637–645 (1982).

    Article  CAS  Google Scholar 

  30. Meier, P. J., Mueller, H. K., Dick, B. & Meyer, U. A. Hepatic monooxygenase activities in subjects with a genetic defect in drug oxidation. Gastroenterology 85, 682–692 (1983).

    CAS  PubMed  Google Scholar 

  31. Distlerath, L. M. et al. Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 260, 9057–9067 (1985).

    CAS  PubMed  Google Scholar 

  32. Gut, J. et al. Debrisoquine-type polymorphism of drug oxidation: purification from human liver of a cytochrome P450 isozyme with high activity for bufuralol hydroxylation. Febs Lett. 173, 287–290 (1984).

    Article  CAS  Google Scholar 

  33. Zanger, U. M., Hauri, H. P., Loeper, J., Homberg, J. C. & Meyer, U. A. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II. Proc. Natl Acad. Sci. USA 85, 8256–8260 (1988).

    Article  CAS  Google Scholar 

  34. Gonzalez, F. J. et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331, 442–446 (1988).

    Article  CAS  Google Scholar 

  35. Skoda, R. C., Gonzalez, F. J., Demierre, A. & Meyer, U. A. Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc. Natl Acad. Sci. USA 85, 5240–5243 (1988).

    Article  CAS  Google Scholar 

  36. Kagimoto, M., Heim, M., Kagimoto, K., Zeugin, T. & Meyer, U. A. Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J. Biol. Chem. 265, 17209–17214 (1990).

    CAS  PubMed  Google Scholar 

  37. Gough, A. C. et al. Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature 347, 773–776 (1990).

    Article  CAS  Google Scholar 

  38. Heim, M. & Meyer, U. A. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336, 529–532 (1990).

    Article  CAS  Google Scholar 

  39. Bertilsson, L., Aberg-Wistedt, A. & Gustaffson, L. L. Extremely rapid hydroxylation of debrisoquine; a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther. Drug. Monit. 7, 478–480 (1985).

    Article  CAS  Google Scholar 

  40. Johansson, I. et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl Acad. Sci. USA 90, 11825–11829 (1993).

    Article  CAS  Google Scholar 

  41. Bertilsson, L. et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 341, 63 (1993).

    Article  CAS  Google Scholar 

  42. Küpfer, A. & Preisig, R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur. J. Clin. Pharmacol. 26, 753–759 (1984).

    Article  Google Scholar 

  43. de Morais, S. M. F. et al. Identification of a new genetic defect responsible for the polymorphism of S-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46, 594–598 (1994).

    CAS  PubMed  Google Scholar 

  44. Sullivan-Klose, T. H. et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341–349 (1996).

    Article  CAS  Google Scholar 

  45. Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med. 348, 529–537 (2003).

    Article  Google Scholar 

  46. Goldstein, D. B., Tate, S. K. & Sisodiya, S. M. Pharmacogenetics goes genomic. Nature Rev. Genet. 4, 937–947 (2003).

    Article  CAS  Google Scholar 

  47. Roden, D. M. & George, A. L. Jr. The genetic basis of variability in drug responses. Nature Rev. Drug Discov. 1, 37–44 (2002).

    Article  CAS  Google Scholar 

  48. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  Google Scholar 

  49. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  50. Nebert, D. W., Jorge-Nebert, L. & Vesell, E. S. Pharmacogenomics and 'individualized drug therapy': high expectations and disappointing achievements. Am. J. Pharmacogenomics 3, 361–370 (2003).

    Article  Google Scholar 

  51. Handschin, C. & Meyer, U. A. Induction of drug metabolism: the role of nuclear receptors. Pharmacol. Rev. 55, 649–673 (2003).

    Article  CAS  Google Scholar 

  52. Chou, W. H. et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J. Clin. Psychopharmacol. 20, 246–251 (2000).

    Article  CAS  Google Scholar 

  53. Bönicke, R. & Reif, W. Enzymatische Inaktivierung von Isonicotinsäure hydrazide im menschlichen und tierischen Organismus. Arch. Exp. Pathol. Pharmakol. 220, 321–333 (1953).

    Article  Google Scholar 

  54. Hughes, H. B., Biehl, J. P., Jones, A. P. & Schmidt, L. H. On the metabolic fate of isoniazid. J. Pharmacol. Exp. Therap. 109, 444–452 (1953).

    CAS  Google Scholar 

  55. Hughes, H. B., Biehl, J. P., Jones, A. P. & Schmidt, L. H. Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis. Am. Rev. Tuberc. 70, 266–273 (1954).

    CAS  PubMed  Google Scholar 

  56. Evans, D. A. P., Manley, F. A. & McKusick, V. A. Genetic control of isoniazid metabolism in man. Br. Med. J. 2, 485–491 (1960).

    Article  CAS  Google Scholar 

  57. Blum, M., Demierre, A., Grant, D. M., Heim, M. & Meyer, U. A. Molecular mechanism of slow acetylation in man. Proc. Natl Acad. Sci. USA. 88, 5237–5241 (1991).

    Article  CAS  Google Scholar 

  58. Vatsis, K. P., Martel, K. J. & Weber, W. W. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc. Natl Acad. Sci. USA 88, 6333–6337 (1991).

    Article  CAS  Google Scholar 

  59. Meyer, U. A. Pharmacogenetics and adverse drug reactions. Lancet 356, 1667–1671 (2000).

    Article  CAS  Google Scholar 

  60. Kirchheiner, J. et al. Individualized medicine — implementation of pharmacogenetic diagnostics in antidepressant drug treatment of major depressive disorders. Pharmacopsychiatry 36 (Suppl. 3), S235–S243 (2003).

    CAS  PubMed  Google Scholar 

  61. Vatsis, K. P. et al. Nomenclature for N-acetyltransferases. Pharmacogenetics 5, 1–17 (1995).

    Article  CAS  Google Scholar 

  62. Masood, E. A. A consortium plans free SNP map of human genome. Nature 398, 545–546 (1999).

    Article  CAS  Google Scholar 

  63. Scriver, C. R. & Childs, B. (eds) Garrod's Inborn Factors Of Disease (Clarendon Press, Oxford, UK, 1989).

    Google Scholar 

Download references

Acknowledgements

Research in the author's laboratory is supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entez

AhR

CAR

CYP2C9

CYP2C19

CYP2D6

G6PD

NAT2

TPMT

UGT1A1

Home Page of the CYP Allele Nomenclature Committee

International HapMap Project

Arylamine N-Acetyltransferase (NAT) Nomenclature

Glossary

ALCAPTONURIA

A rare inherited disorder of metabolism that is characterized by urine which turns black when exposed to air.

ANTI-ARRHYTHMICS

Medicines that are used to treat patients who have irregular heart rhythms.

APNEA

The absence of breathing (respirations).

CHEMICAL INDIVIDUALITY

Garrod's influential idea that 'factors which confer upon us our predisposition and immunities from disease are inherent in our very chemical structure, and even in the molecular groupings which went to the making of the chromosomes from which we sprang.'

DIPLOPIA

Double vision. Usually due to misalignment of the eyes.

FAMILIAL DYSAUTONOMIA

A disorder of the autonomic nervous system that is inherited as an autosomal recessive trait and is characterized by several sensory deficits (as of taste and pain), excessive sweating and salivation, lack of tears, difficulty in swallowing and many other symptoms.

HYPERBILIRUBINEMIA

Abnormally high levels of bilirubin in the blood.

ISONIAZID

An anti-bacterial drug that has been used to prevent and to treat tuberculosis since 1952.

MALIGNANT HYPERTHERMIA

A group of inherited muscle problems characterized by muscle breakdown following certain stimuli — such as anesthesia, extremes of exercise (particularly in hot conditions), fever, or use of stimulant drugs. The problems associated with this condition result from over-excitable muscles that contract uncontrollably, severe fever, abnormal heart rhythms, and kidney failure.

MEPHENYTOIN

An anticonvulsant that is indicated for the treatment of tonic-clonic and partial seizures in patients who are not controlled with less-toxic medications.

METHEMOGLOBINEMIA

An inherited blood disorder that is characterized by increased levels of an abnormal form of haemoglobin that is unable to deliver oxygen effectively.

NORTRIPTYLINE

An antidepressant medication of the tricyclic class. Medications in this class are often referred to as tricyclic antidepressants, or TCAs.

OPIOIDS

Synthetic opium-like drugs that possess some affinity for any, or all, of the opioid-receptor subtypes. Common opioids are endorphin, fentanyl and methadone.

OXYTOXIC

A drug that is useful in starting or aiding in labour. Also used to stimulate uterine contractions.

PERIPHERAL NEUROPATHY

A problem in peripheral nerve function (any part of the nervous system except the brain and spinal cord) that causes pain, numbness, tingling, swelling, and muscle weakness in various parts of the body. Neuropathies might be caused by physical injury, infection, toxic substances, disease (for example, cancer, diabetes, kidney failure, or malnutrition), or drugs such as anticancer drugs.

PHARMACODYNAMICS

The process of interaction of pharmacologically active substances with target sites, and the biochemical and physiological consequences leading to therapeutic or adverse effects.

PHARMACOKINETICS

The rocess of the uptake of drugs by the body, the biotransformation they undergo, the distribution of the drugs and their metabolites in the tissues, and the elimination of the drugs and their metabolites from the body.

PORPHYRIA

A group of disorders that are characterized by the excessive production of porphyrins or their precursors, and which arise from abnormalities in the regulation of the porphyrin–heme pathway. Acquired pophyrias, which are due to inhibition of enzymes in the metabolic pathway by a drug, toxin or abnormal metabolite, are more common than those that are inherited.

PSEUDOCHOLINESTERASE DEFICIENCY

A rare genetic disorder that causes an absence of the plasma enzyme pseudocholinesterase, which can cause respiratory difficulty during surgery if the muscle-relaxing drug succinylcholine is used.

SYMPATHICOLYTIC

Interfering with, opposing, inhibiting, or destroying impulses from the sympathetic nervous system.

WARFARIN

An oral anticoagulant that inhibits the synthesis of clotting factors, thus preventing blood-clot formation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, U. Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 5, 669–676 (2004). https://doi.org/10.1038/nrg1428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing