Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Improving the efficiency of RNA interference in mammals

Key Points

  • RNA interference (RNAi) is the process in which dsRNA leads to gene silencing, by either inducing the sequence-specific degradation of complementary mRNA or inhibiting translation.

  • RNAi has been successfully applied as a powerful gene-silencing approach to various organisms, including Caenorhabditis elegans, plants, Drosophila melanogaster and mouse oocytes.

  • The use of long dsRNAs in mammalian systems has been limited primarily because the introduction of dsRNA that is longer than 30 nucleotides (nt) induces a nonspecific interferon response. However, short 21–22-nt dsRNA molecules — known as small interfering RNAs (siRNAs) — could be used to target mammalian genes by RNAi while evading the interferon response.

  • RNAi in mammals is triggered by various types of molecule, including synthetic siRNAs, plasmid-based short hairpin RNAs (shRNAs) or endogenous hairpin micro RNAs (miRNAs).

  • It is now possible to carry out gene-silencing experiments in various cell types and cell lines, as well as in living animals. This is largely due to the development of DNA-vector-based siRNA-expression systems that allow the stable and prolonged silencing of target genes, together with a wider choice of delivery methods. Germline transmission of cells that contain an shRNA transgene — such as embryonic stem cells in mice and fertilized eggs in rats — has also been accomplished.

  • The specificity and efficiency of RNAi in mammals has improved greatly thanks to advances in rational design, the ability to screen for the most effective siRNAs and tools that allow the inducible suppression of endogenous genes.

  • Genome-wide functional RNAi screens, which were previously carried out exclusively in worms and flies, have now begun to revolutionize large-scale loss-of-function studies in mammals.

  • The application of RNAi in mammals has the potential to allow the systematic analysis of gene expression and holds the promise of therapeutic gene silencing.

Abstract

RNA interference (RNAi) has been very successfully applied as a gene-silencing technology in both plants and invertebrates, but many practical obstacles need to be overcome before it becomes viable in mammalian systems. Greater specificity and efficiency of RNAi in mammals is being achieved by improving the design and selection of small interfering RNAs (siRNAs), by increasing the efficacy of their delivery to cells and organisms, and by engineering their conditional expression. Genome-wide functional RNAi screens, which are predominantly done in worms and flies, have now begun to revolutionize large-scale loss-of-function studies in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNAi-mediated gene silencing in mammals.
Figure 2: The generation of effective siRNA.
Figure 3: Microarray-based screening for effective siRNA.
Figure 4: Large-scale RNAi screens in cells.

Similar content being viewed by others

References

  1. Sharp, P. A. RNAi and double-strand RNA. Genes Dev. 13, 139–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hammond, S. M., Caudy, A. A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev. Genet. 2, 110–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. McManus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet. 3, 737–747 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Dykxhoorn, D. M., Novina, C. D. & Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell Biol. 4, 457–467 (2003).

    Article  CAS  Google Scholar 

  6. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001). Shows for the first time that chemically synthesized short dsRNA molecules of 21-22 nt — known as small interfering RNAs (siRNAs) — could be used to target mammalian genes by RNAi while evading the interferon responses. This was confirmed independently by reference 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA. 98, 9742–9747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002). This work, together with references 9–11 and 53–55, shows that plasmids are cost-effective; they also provide a continuous expression of hairpin RNAs that is useful for analysing loss-of-function phenotypes that develop over extended periods of time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA 99, 5515–5520 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brummelkamp, T. R. & Bernards, R. New tools for functional mammalian cancer genetics. Nature Rev. Cancer 3, 781–789 (2003).

    Article  CAS  Google Scholar 

  11. Paul, C. P., Good, P. D., Winer, I. & Engelke, D. R. Effective expression of small interfering RNA in human cells. Nature Biotechnol. 20, 505–508 (2002).

    Article  CAS  Google Scholar 

  12. Bridge, A. J., Pebernard, S., Ducraux, A., Nicoulaz, A. L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genet. 34, 263–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Shuey, D. J., McCallus, D. E. & Giordano, T. RNAi: gene-silencing in therapeutic intervention. Drug Discov. Today 7, 1040–1046 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Silva, J. M., Hammond, S. M. & Hannon, G. J. RNA interference: a promising approach to antiviral therapy? Trends Mol. Med. 8, 505–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, V. N. RNA interference in functional genomics and medicine. J. Korean Med. Sci. 18, 309–318 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Capecchi, M. R. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70–76 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Scherer, L. J. & Rossi, J. J. Approaches for the sequence-specific knockdown of mRNA. Nature Biotechnol. 21, 1457–1465 (2003). A review that highlights the use of RNA-based methods such as antisense vectors, catalytic RNA molecules (ribozymes) and catalytic DNA molecules (DNAzymes) to suppress gene expression.

    Article  CAS  Google Scholar 

  19. Opalinska, J. B. & Gewirtz, A. M. Nucleic-acid therapeutics: basic principles and recent applications. Nature Rev. Drug Discov. 1, 503–514 (2002).

    Article  CAS  Google Scholar 

  20. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001). Describes the identification of the ribonuclease III activity of the evolutionary conserved Dicer enzyme, which is required for processing long dsRNA into 21–22nt fragments (siRNA).

    Article  CAS  PubMed  Google Scholar 

  21. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng, Y., Yi, R. & Cullen, B. R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl Acad. Sci. USA 100, 9779–9784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003). References 26 and 27 describe, for the first time, the mechanism of bias in siRNA strand selection that occurs during siRNA–RISC assembly and activation, and that influences the overall efficiency of RNAi. This information has contributed important parameters to the rational design of effective siRNAs.

    Article  CAS  PubMed  Google Scholar 

  28. Chiu, Y. L. & Rana, T. M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Chiu, Y. L. & Rana, T. M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reynolds, A. et al. Rational siRNA design for RNA interference. Nature Biotechnol. 22, 326–330 (2004). The authors identified important features that are required to design effective siRNAs by carrying out a systematic analysis of 180 siRNAs that target the mRNAs of two genes.

    Article  CAS  Google Scholar 

  31. Ui-Tei, K. et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar, R., Conklin, D. S. & Mittal, V. High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 13, 2333–2340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–505 (2002).

    Article  CAS  Google Scholar 

  34. Yu, J. Y., Taylor, J., DeRuiter, S. L., Vojtek, A. B. & Turner, D. L. Simultaneous inhibition of GSK3α and GSK3β using hairpin siRNA expression vectors. Mol. Ther. 7, 228–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Vickers, T. A. et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J. Biol. Chem. 278, 7108–7118 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Kretschmer-Kazemi Far, R. & Sczakiel, G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res. 31, 4417–4424 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 30, 1757–1766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bohula, E. A. et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J. Biol. Chem. 278, 15991–15997 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Ding, Y. & Lawrence, C. E. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31, 7280–7301 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genet 33, 396–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Carpenter, A. E. & Sabatini, D. M. Systematic genome-wide screens of gene function. Nature Rev. Genet. 5, 11–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Mousses, S. et al. RNAi microarray analysis in cultured mammalian cells. Genome Res. 13, 2341–2347 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191–3197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller, V. M. et al. Allele-specific silencing of dominant disease genes. Proc. Natl Acad. Sci. USA 100, 7195–7200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gonzalez-Alegre, P., Miller, V. M., Davidson, B. L. & Paulson, H. L. Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann. Neurol. 53, 781–787 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Chi, J. T. et al. Genomewide view of gene silencing by small interfering RNAs. Proc. Natl Acad. Sci. USA 100, 6343–6346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl Acad. Sci. USA 100, 6347–6352 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003). These authors used a DNA microarray approach to measure changes at the mRNA level that result from siRNA-mediated gene silencing. They showed, for the first time, that siRNAs can silence non-targeted genes that have limited sequence similarity to the siRNA.

    Article  CAS  Google Scholar 

  50. Scacheri, P. C. et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl Acad. Sci. USA 101, 1892–1897 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McManus, M. T. et al. Small interfering RNA-mediated gene silencing in T lymphocytes. J. Immunol. 169, 5754–5760 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kishida, T. et al. Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA. J. Gene Med. 6, 105–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol. 20, 497–500 (2002).

    Article  CAS  Google Scholar 

  54. McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J. & Sharp, P. A. Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Kawasaki, H. & Taira, K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31, 700–707 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xia, H., Mao, Q., Paulson, H. L. & Davidson, B. L. siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnol. 20, 1006–1010 (2002).

    Article  CAS  Google Scholar 

  58. Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 17, 1340–1345 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paddison, P. J. & Hannon, G. J. RNA interference: the new somatic cell genetics? Cancer Cell 2, 17–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Barton, G. M. & Medzhitov, R. Retroviral delivery of small interfering RNA into primary cells. Proc. Natl Acad. Sci. USA 99, 14943–14945 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, C. M., Liu de, P., Dong, W. J. & Liang, C. C. Retrovirus vector-mediated stable gene silencing in human cell. Biochem. Biophys. Res. Commun. 313, 716–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Stewart, S. A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tiscornia, G., Singer, O., Ikawa, M. & Verma, I. M. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl Acad. Sci. USA 100, 1844–1848 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van den Haute, C., Eggermont, K., Nuttin, B., Debyser, Z. & Baekelandt, V. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum. Gene Ther. 14, 1799–1807 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Scherr, M., Battmer, K., Ganser, A. & Eder, M. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell Cycle 2, 251–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Abbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W. & Aebischer, P. Lentiviral-mediated RNA interference. Hum. Gene Ther. 13, 2197–2201 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Qin, X. F., An, D. S., Chen, I. S. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl Acad. Sci. USA 100, 183–188 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Shen, C., Buck, A. K., Liu, X., Winkler, M. & Reske, S. N. Gene silencing by adenovirus-delivered siRNA. FEBS Lett. 539, 111–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Arts, G. J. et al. Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res. 13, 2325–2332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pfeifer, A., Ikawa, M., Dayn, Y. & Verma, I. M. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl Acad. Sci. USA 99, 2140–2145 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Williams, D. A. & Baum, C. Medicine. Gene therapy—new challenges ahead. Science 302, 400–401 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Marshall, E. Gene therapy. Second child in French trial is found to have leukemia. Science 299, 320 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Carmell, M. A., Zhang, L., Conklin, D. S., Hannon, G. J. & Rosenquist, T. A. Germline transmission of RNAi in mice. Nature Struct. Biol. 10, 91–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Hasuwa, H., Kaseda, K., Einarsdottir, T. & Okabe, M. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532, 227–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kunath, T. et al. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nature Biotechnol. 21, 559–561 (2003).

    Article  CAS  Google Scholar 

  79. McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genet. 32, 107–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Med. 9, 347–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Hommel, J. D., Sears, R. M., Georgescu, D., Simmons, D. L. & DiLeone, R. J. Local gene knockdown in the brain using viral-mediated RNA interference. Nature Med. 9, 1539–1544 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Kile, B. T. et al. Functional genetic analysis of mouse chromosome 11. Nature 425, 81–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898 (2000).

    Article  CAS  Google Scholar 

  85. Czauderna, F. et al. Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res. 31, e127 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van de Wetering, M. et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609–615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003). Along with references 85, 86, 88, 91 and 92, these authors show that RNAi can be activated in a conditional manner in mammalian systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matsukura, S., Jones, P. A. & Takai, D. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 31, e77 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chen, Y., Stamatoyannopoulos, G. & Song, C. Z. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res. 63, 4801–4804 (2003).

    CAS  PubMed  Google Scholar 

  90. No, D., Yao, T. P. & Evans, R. M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl Acad. Sci. USA 93, 3346–3351 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Van Craenenbroeck, K., Vanhoenacker, P., Leysen, J. E. & Haegeman, G. Evaluation of the tetracycline- and ecdysone-inducible systems for expression of neurotransmitter receptors in mammalian cells. Eur. J. Neurosci. 14, 968–976 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J. & Mittal, V. Inducible, reversible and stable RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 101, 1927–1932 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stolarov, J. et al. Design of a retroviral-mediated ecdysone-inducible system and its application to the expression profiling of the PTEN tumor suppressor. Proc. Natl Acad. Sci. USA 98, 13043–13048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33, 40–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Pothof, J. et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev. 17, 443–448 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Kiger, A. et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 12, 627–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Zheng, L. et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 101, 135–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Shirane, D. et al. Enzymatic production of RNAi libraries from cDNAs. Nature Genet. (2004).

  108. Sen, G., Wehrman, T. S., Myers, J. W. & Blau, H. M. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nature Genet. 36, 183–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Berns, K. et al. A large-scale RNAi screen in human cells identifies novel components of the p53 pathway. Nature 428, 431–437 (2004). This work, together with reference 127, describes the generation and applications of array-formatted retrovirus-based barcoded shRNA expression libraries that target human and murine genes.

    Article  CAS  PubMed  Google Scholar 

  110. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf–3 strain reveals novel gene functions. PLoS Biol. 1, E12 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ramos-Nino, M. E., Scapoli, L., Martinelli, M., Land, S. & Mossman, B. T. Microarray analysis and RNA silencing link fra-1 to cd44 and c-met expression in mesothelioma. Cancer Res. 63, 3539–3545 (2003).

    CAS  PubMed  Google Scholar 

  113. Ruzinova, M. B. et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4, 277–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).

    CAS  PubMed  Google Scholar 

  115. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Kapadia, S. B., Brideau-Andersen, A. & Chisari, F. V. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl Acad. Sci. USA 100, 2014–2018 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Calegari, F., Haubensak, W., Yang, D., Huttner, W. B. & Buchholz, F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc. Natl Acad. Sci. USA 99, 14236–14240 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kawasaki, H., Suyama, E., Iyo, M. & Taira, K. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res. 31, 981–987 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Myers, J. W., Jones, J. T., Meyer, T. & Ferrell, J. E. Jr. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nature Biotechnol. 21, 324–328 (2003).

    Article  CAS  Google Scholar 

  120. Bryom, M., Pallota, V., Brown, D. & Ford, L. Visualizing siRNA in mammalian cells: fluorescence analysis of the RNAi effect. Ambion TechNotes 9, 3–5 (2002).

    Google Scholar 

  121. Schwarz, D. S., Hutvagner, G., Haley, B. & Zamore, P. D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Kirchner, R., Vogtherr, M., Limmer, S. & Sprinzl, M. Secondary structure dimorphism and interconversion between hairpin and duplex form of oligoribonucleotides. Antisense Nucleic Acid Drug Dev. 8, 507–516 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Holen, T., Amarzguioui, M., Babaie, E. & Prydz, H. Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res. 31, 2401–2407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shoemaker, D. D., Lashkari, D. A., Morris, D., Mittmann, M. & Davis, R. W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genet. 14, 450–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Kim, D. H. et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nature Biotechnol. 22, 321–325 (2004).

    Article  CAS  Google Scholar 

  127. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the members of his laboratory for critical reading of the manuscript and several other investigators for sharing their unpublished work. We acknowledge that space limitations might have precluded the citation of work of some investigators. The author was supported by grants from Cold Spring Harbor Laboratory and the National Institute of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

AKT1

CCR5

CD44

CXCR4

cyclophilin B

CYLD

Dicer

DNMT1

FRA1

Hh

Id

IGF1R

LMNA

LMO2

MyoD

PLK1

RB

SOD1

TH

TP53

OMIM

X-SCID

FURTHER INFORMATION

Vivek Mittal's laboratory

Nature Reviews web focus on RNAi

NCBI Unigene

RNAi animation

Glossary

INTERFERONS

A group of glycoprotein cytokines that are produced by animal cells when they are invaded by viruses. They are also activated by long dsRNA, which results in the activation of 2′–5′ oligoadenylate synthase and protein kinase PKR. The 2′–5′ oligonucleotide activates RNAseL, which leads to mRNA cleavage. PKR phosphorylates the translation initiation factor eI2α, which leads to global inhibition of mRNA translation.

HOMOLOGOUS RECOMBINATION

The process of replacing an endogenous gene with an artifical cassette that is flanked by regions that are homologous to sequences bordering the targeted gene. It is used as a technique to inactivate a gene and determine its function in a living animal.

ANTISENSE VECTORS

Vectors that express DNA or RNA molecules that are complementary to sequences on target mRNA and result in the inhibition of protein synthesis.

FEATURE

A spot on a microarray that has a defined shape, size and intensity.

ORTHOTOPIC

The transplantation of foreign tumour cells into another species at its normal anatomical position.

TRAIL-INDUCED APOPTOSIS

The tumour necrosis factor (TNF)-receptor-related apoptosis-inducing ligand (TRAIL) is a secreted protein ligand that binds to its receptor and induces apoptosis selectively in tumour cells but not in normal cells.

SYNTHETIC LETHAL MUTATIONS

Two mutations are considered to be synthetically lethal if in combination they result in cell death, whereas either alone leads to a viable cell.

BARCODE

A short stretch of DNA that functions as a unique molecular fingerprint for each short hairpin RNA in a library. The molecular barcode can be identified and recovered by PCR amplification, by using primers that are specific to each barcode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittal, V. Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5, 355–365 (2004). https://doi.org/10.1038/nrg1323

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing