Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using human neural stem cells to model neurological disease

Key Points

  • Many common neurological diseases have an underlying genetic basis that can be modelled in transgenic animals. However, animal models do not always faithfully reproduce the human syndrome. The urgent need for therapeutics that are aimed at neuroprotection underscores the necessity for alternative model systems.

  • The study of the diseased human brain is crucial for understanding how mutant proteins lead to neuronal cell death. Unfortunately, this tissue is scarce and difficult to manipulate in vitro.

  • Human stem cells represent a renewable source of human neural tissue that is naturally mitotic without transformation or immortalization. Stem cells can be generated from embryonic, fetal brain and adult brain tissue. Cells that are derived from the different sources have different characteristics that make them more or less useful for modelling neurological disease.

  • Isolation of stem cells from diseased tissues might help to uncover mechanisms of cell death that have been seen in non-human models. Furthermore, mutations can be introduced into both mitotic and non-mitotic neuroepithelial cells through viral vectors or homologous recombination.

  • Neural stem cells can be induced to differentiate into mature, physiologically active neurons and glia, and can be assessed in an undifferentiated or differentiated state and after engraftment.

  • Stem-cell models allow the analysis of neuronal and glial subtypes simultaneously, and they can be assessed using current microarray technologies as well as other conventional activity and expression assays. Stem cells, of course, also have their disadvantages.

  • Examples of how stem cells can be used to model specific neurodegenerative conditions are given.

  • Further experimentation with stem cells and establishment of disease models will provide an important system to test signal-transduction pathways and disease mechanisms in human cells before clinical trials are attempted.

  • Human stem-cell models should be used in parallel with current transgenic animal models as each approach has important strengths.

Abstract

Although many common neurological diseases can be modelled in rodents, in many cases these animal models do not faithfully reproduce the human syndrome at either the molecular or anatomical levels — perhaps owing to important species differences. The study of diseased human brain tissue is therefore crucial for understanding how mutant proteins or toxins might lead to neuronal dysfunction. Unfortunately, this tissue is both scarce and difficult to manipulate. Human stem cells represent a renewable source of tissue that can generate both neurons and glia. Studies that use human stem cells from diseased tissues or stem cells that have been engineered to express specific mutant proteins promise to provide new insights into the mechanisms that underlie neurological diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for establishing a stem-cell model for an inherited neurodegenerative disease and the potential mode of assessment.
Figure 2: Expression of GFP or α-synuclein transgenes in neurospheres and differentiated human neural stem cells.

Similar content being viewed by others

References

  1. Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med. 5, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Groeneveld, G. J. et al. A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann. Neurol. 53, 437–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Gasser, T. et al. A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nature Genet. 18, 262–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Reaume, A. G. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13, 43–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. & Lee, V. M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 139, 1307–1315 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Howland, D. S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA 99, 1604–1609 (2002). Shows that mutant SOD1 can be transgenically expressed in rats, leading to motoneuron death and changes in glial function. However, to obtain a phenotype similar to that of humans requires the insertion of multiple copies of the mutant gene; this is unlike the human disease in which one copy of mutant SOD1 is sufficient to cause ALS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Betarbet, R., Sherer, T. B. & Greenamyre, J. T. Animal models of Parkinson's disease. Bioessays 24, 308–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Beal, M. F. Experimental models of Parkinson's disease. Nature Rev. Neurosci. 2, 325–334 (2001).

    Article  CAS  Google Scholar 

  12. Corsini, G. U., Pintus, S., Bocchetta, A., Piccardi, M. P. & Del Zompo, M. Primate-rodent 3H-MPTP binding differences, and biotransformation of MPTP to a reactive intermediate in vitro. J. Neural Transm. Suppl. 22, 55–60 (1986).

    CAS  PubMed  Google Scholar 

  13. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet. 18, 106–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000). First fly model of a human neurodegenerative disease. Dopamine neurons were selectively lost and the flies had motor deficits.

    Article  CAS  PubMed  Google Scholar 

  17. van der, P. H. et al. Neuropathology in mice expressing human α-synuclein. J. Neurosci. 20, 6021–6029 (2000).

    Article  Google Scholar 

  18. Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neuro-degenerative disorders. Science 287, 1265–1269 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, M. K. et al. Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc. Natl Acad. Sci. USA 99, 8968–8973 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giasson, B. I. et al. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34, 521–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Rathke-Hartlieb, S. et al. Sensitivity to MPTP is not increased in Parkinson's disease-associated mutant α-synuclein transgenic mice. J. Neurochem. 77, 1181–1184 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N. & Aebischer, P. α-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc. Natl Acad. Sci. USA 99, 10813–10818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kirik, D. et al. Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. J. Neurosci. 22, 2780–2791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirik, D. et al. Nigrostriatal α-synucleinopathy induced by viral vector-mediated overexpression of human α-synuclein: a new primate model of Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 2884–2889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singleton, A. B. et al. α-synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Outeiro, T. F. & Lindquist, S. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Willingham, S., Outeiro, T. F., DeVit, M. J., Lindquist, S. L. & Muchowski, P. J. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or {α}-synuclein. Science 302, 1769–1772 (2003). First paper to use yeast cells to model differences in molecular and cellular changes associated with either huntingtin or synuclein.

    Article  CAS  PubMed  Google Scholar 

  28. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  29. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Hodgson, J. G. et al. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Martindale, D. et al. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nature Genet. 18, 150–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Li, S. H., Cheng, A. L., Li, H. & Li, X. J. Cellular defects and altered gene expression in PC12 cells stably expressing mutant huntingtin. J. Neurosci. 19, 5159–5172 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peters, M. F. et al. Nuclear targeting of mutant Huntingtin increases toxicity. Mol. Cell Neurosci. 14, 121–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Wheeler, V. C. et al. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum. Mol. Genet. 8, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Morton, A. J. & Leavens, W. Mice transgenic for the human Huntington's disease mutation have reduced sensitivity to kainic acid toxicity. Brain Res. Bull. 52, 51–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Petersen, A. et al. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. Eur. J. Neurosci. 14, 1425–1435 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Petersen, A. et al. Maintenance of susceptibility to neurodegeneration following intrastriatal injections of quinolinic acid in a new transgenic mouse model of Huntington's disease. Exp. Neurol. 175, 297–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Snider, B. J. et al. Neocortical neurons cultured from mice with expanded CAG repeats in the huntingtin gene: unaltered vulnerability to excitotoxins and other insults. Neuroscience 120, 617–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X. et al. Immunochemical evidence that human apoB differs when expressed in rodent versus human cells. J. Lipid Res. 44, 547–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Ishii, S. et al. α-galactosidase transgenic mouse: heterogeneous gene expression and posttranslational glycosylation in tissues. Glycoconj. J. 15, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Kempermann, G., Kuhn, H. G. & Gage, F. H. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc. Natl Acad. Sci. USA 94, 10409–10414 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carlson, G. A. et al. Genetic modification of the phenotypes produced by amyloid precursor protein overexpression in transgenic mice. Hum. Mol. Genet. 6, 1951–1959 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Elsea, S. H. & Lucas, R. E. The mousetrap: what we can learn when the mouse model does not mimic the human disease. ILAR J. 43, 66–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Wright, W. E. & Shay, J. W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med. 6, 849–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Yoshimi, N. et al. Telomerase activity of normal tissues and neoplasms in rat colon carcinogenesis induced by methylazoxymethanol acetate and its difference from that of human colonic tissues. Mol. Carcinog. 16, 1–5 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Ostenfeld, T. et al. Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp. Neurol. 164, 215–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Strong, T. V. et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nature Genet. 5, 259–265 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Sawa, A. et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Med. 5, 1194–1198 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Jakab, K. et al. UVB irradiation-induced apoptosis increased in lymphocytes of Huntington's disease patients. Neuroreport 12, 1653–1656 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Tonini, G. P. Neuroblastoma: the result of multistep transformation? Stem Cells 11, 276–282 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Tweddle, D. A. et al. The p53 pathway and its inactivation in neuroblastoma. Cancer Lett. 197, 93–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Goggi, J. et al. The neuronal survival effects of rasagiline and deprenyl on fetal human and rat ventral mesencephalic neurons in culture. Neuroreport 11, 3937–3941 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, W., Schaack, J., Zawada, W. M. & Freed, C. R. Overexpression of human [α]-synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res. 926, 42–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Xu, J. et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nature Med. 8, 600–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocyts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnol. 19, 1129–1133 (2001).

    Article  CAS  Google Scholar 

  57. Reubinoff, B. E. et al. Neural progenitors from human embryonic stem cells. Nature Biotechnol. 19, 1134–1140 (2001). Together with REF. 56, this paper describes how neural cells can be derived from human ES cells in culture.

    Article  CAS  Google Scholar 

  58. Svendsen, C. N. et al. A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods 85, 141–153 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Carpenter, M. K. et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265–278 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Vescovi, A. L. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Sabate, O. et al. Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nature Genet. 9, 256–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Wright, L. S. et al. Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J. Neurochem. 86, 179–195 (2003). Demonstrates the reproducibility and reliability of microarray analysis of human neural stem-cell cultures and their maintainance over time.

    Article  CAS  PubMed  Google Scholar 

  64. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Palmer, T. D., Ray, J. & Gage, F. H. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci. 6, 474–486 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Palmer, T. D., Takahashi, J. & Gage, F. H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 8, 389–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Pincus, D. W. et al. Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43, 576–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Roy, N. S. et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Med. 6, 271–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Nunes, M. C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nature Med. 9, 439–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Johansson, C. B., Svensson, M., Wallstedt, L., Janson, A. M. & Frisen, J. Neural stem cells in the adult human brain. Exp. Cell Res. 253, 733–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Ostenfeld, T. et al. Regional specification of rodent and human neurospheres. Brain Res. Dev. Brain Res. 134, 43–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Hitoshi, S., Tropepe, V., Ekker, M. & van der, K. D. Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129, 233–244 (2002).

    CAS  PubMed  Google Scholar 

  73. D'Amour, K. A. & Gage, F. H. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc. Natl Acad. Sci. USA 100, 11866–11872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bhattacharyya, A. & Svendsen, C. N. Human neural stem cells: a new tool for studying cortical development in Down's syndrome. Genes Brain Behav. 2, 179–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Pfeifer, A., Ikawa, M., Dayn, Y. & Verma, I. M. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl Acad. Sci. USA 99, 2140–2145 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, P., Ye, Y. & Svendsen, C. N. Transduction of human neural progenitor cells using recombinant adeno-associated viral vectors. Gene Ther. 9, 245–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Ostenfeld, T. et al. Neurospheres modified to produce glial cell line-derived neurotrophic factor increase the survival of transplanted dopamine neurons. J. Neurosci. Res. 69, 955–965 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Kafri, T., van Praag, H., Gage, F. H. & Verma, I. M. Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Belteki, G., Gertsenstein, M., Ow, D. W. & Nagy, A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nature Biotechnol. 21, 321–324 (2003). Shows the use of a Streptomyces phage integrase to obtain site-specific transgene integration in mouse ES cells.

    Article  CAS  Google Scholar 

  81. Zwaka, T. P. & Thomson, J. A. Homologous recombination in human embryonic stem cells. Nature Biotechnol. 21, 319–321 (2003). Reports the first example of gene insertion through homologous recombination in human embryonic stem cells.

    Article  CAS  Google Scholar 

  82. Abe, Y. et al. Analysis of neurons created from wild-type and Alzheimer's mutation knock-in embryonic stem cells by a highly efficient differentiation protocol. J. Neurosci. 23, 8513–8525 (2003). One of the first examples to show the utility of stem cells to examine the neuropathology of familial Alzheimer disease using homologous recombination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bahn, S. et al. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down's syndrome: a gene expression study. Lancet 359, 310–315 (2002). Shows that neural stem cells can be derived and successfully cultured from human tissue that carries a mutation that is inherited naturally through the germline. Furthermore, gene-expression analysis showed previously unknown changes in the expression of genes that are crucial for cortical development.

    Article  CAS  PubMed  Google Scholar 

  84. Hoogeveen, A. T., Willemsen, R. & Oostra, B. A. Fragile X syndrome, the Fragile X related proteins, and animal models. Microsc. Res. Tech. 57, 148–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Silani, V., Braga, M., Ciammola, A., Cardin, V. & Scarlato, G. Motor neurons in culture as a model to study ALS. J. Neurol. 247 (Suppl 1), I28–I36 (2000).

    Article  PubMed  Google Scholar 

  87. Silani, V. et al. Human developing motor neurons as a tool to study ALS. Amyotroph. Lateral. Scler. Other Motor Neuron Disord. 2 (Suppl 1), S69–S76 (2001).

    Article  PubMed  Google Scholar 

  88. Rao, S. D., Yin, H. Z. & Weiss, J. H. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J. Neurosci. 23, 2627–2633 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Caldwell, M. A. et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nature Biotechnol. 19, 475–479 (2001).

    Article  CAS  Google Scholar 

  90. Lotharius, J. & Brundin, P. Impaired dopamine storage resulting from α-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Hum. Mol. Genet. 11, 2395–2407 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Chu-LaGraff, Q., Kang, X. & Messer, A. Expression of the Huntington's disease transgene in neural stem cell cultures from R6/2 transgenic mice. Brain Res. Bull. 56, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Bhide, P. G. et al. Expression of normal and mutant huntingtin in the developing brain. J. Neurosci. 16, 5523–5535 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rasmussen, A. et al. Huntington disease in children: genotype-phenotype correlation. Neuropediatrics 31, 190–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002). Together with REF. 94, this paper has fuelled a discussion about how to detect basal gene expression that is specific to stem-cell populations (see REFS 95–99). The discussion has shown the complexity of ascertaining global gene expression in cell populations.

    Article  CAS  PubMed  Google Scholar 

  96. Evsikov, A. V. & Solter, D. Comment on ''Stemness': transcriptional profiling of embryonic and adult stem cells' and 'a stem cell molecular signature'. Science 302, 393 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Fortunel, N. O. et al. Comment on ''Stemness': transcriptional profiling of embryonic and adult stem cells' and 'a stem cell molecular signature'. Science 302, 393 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Vogel, G. Stem cells. 'Stemness' genes still elusive. Science 302, 371 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Geschwind, D. H. et al. A genetic analysis of neural progenitor differentiation. Neuron 29, 325–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Suslov, O. N., Kukekov, V. G., Ignatova, T. N. & Steindler, D. A. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc. Natl Acad. Sci. USA 99, 14506–14511 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Svendsen, C. N. & Caldwell, M. A. Neural stem cells in the developing central nervous system: implications for cell therapy through transplantation. Prog. Brain Res. 127, 13–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Richards, S. -J. et al. Transplants of mouse trisomy 16 hippocampus provide a model of Alzheimer's disease neuropathology. EMBO J. 10, 297–303 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fletcher, L. US stem cell policy comes under fire. Nature Biotechnol. 19, 893–894 (2001).

    Article  CAS  Google Scholar 

  104. Rowley, J. D., Blackburn, E., Gazzaniga, M. S. & Foster, D. W. Harmful moratorium on stem cell research. Science 297, 1957 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Kennedy, D. Stem cells: still here, still waiting. Science 300, 865 (2003).

    Article  PubMed  Google Scholar 

  106. Disease insights from stem cells. Nature 422, 787 (2003).

Download references

Acknowledgements

Thanks to S. Behrstock for helpful discussions. B.L.S. is supported by the Swiss Foundation for Grants in Biology and Medicine. Viral vectors used to transduce neurospheres were courtesy of P. Aebischer, Lausanne, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive N. Svendsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

DJ1

HD

Hprt

PARK2

SNCA

SOD1

OMIM

Alzheimer disease

Amyotrophic lateral sclerosis

Huntington disease

Parkinson disease

FURTHER INFORMATION

Stem-cell research program — Waisman Center

Wisconsin stem-cell research program

Glossary

TRANSFORMATION

In terms of a neoplastic phenotype, a condition in which a specific genetic alteration(s) promotes dysregulated growth and proliferation, leading to a malignant phenotype.

GLIA

A support cell in the central nervous system. The three types of glia are astrocytes, oligodendrocytes and microglia.

KNOCK-OUT

A technique in which homologous recombination is used to inactivate a gene from its endogenous locus to create a null phenotype.

KNOCK-IN

A technique in which homologous recombination is used to insert a gene into a selected chromosomal location.

HETEROLOGOUS RANDOM INTEGRATION

A technique in which specific genes are introduced into the genome through pronuclear micro-injection, and integrate at random into unpredictable sites of the genome.

DOPAMINERGIC NEURONS

Neurons that synthesize and release the catecholaminergic transmitter dopamine.

SUBSTANTIA NIGRA PARS COMPACTA

The specific midbrain region that degenerates in Parkinson disease; part of the basal ganglia that innervates the striatum with dopaminergic fibres that are essential for movement initiation.

FIBRILS

An abnormal protein conformation that consists of organized filamentous structures seen in protein aggregates.

LEWY BODIES

Proteinaceous cellular deposits or inclusion bodies that contain ubiquitin, α-synuclein and other proteins; considered a hallmark of Parkinson disease histopathology.

EXCITOTOXINS

Glutamatergic agonists that can activate the voltage-sensitive NMDA (N-methyl D-aspartate) receptor allowing calcium influx, consequent activation of calcium-regulated enzymes and cell death.

BASAL GANGLIA

A group of interconnected nuclei in the forebrain and midbrain that includes the striatum (putamen and caudate nucleus), globus pallidus, subthalamic nucleus, ventral tegmental area and substantia nigra.

INNER CELL MASS

A group of cells found in the embryonic blastocyst that make up the embryo proper.

BLASTOCYST

In mammalian development, a thin hollow sphere that consists of the inner cell mass and the trophoblast, which form the placenta.

EMBRYOID BODY

Aggregates of differentiated and undifferentiated cells that are derived from embryonic stem cells in culture.

GERM LAYERS

Three primordial cell layers from which all tissues and organs arise.

SENESCENCE

The process of ageing.

SUBVENTRICULAR ZONE

The naturally neurogenic region that lines the ventricles of the adult brain.

HIPPOCAMPUS

A naturally neurogenic region of the human forebrain that is important for memory formation.

DIFFERENTIAL DISPLAY ANALYSIS

A technique that is used to assess the expression of multiple genes that concurrently uses PCR amplification of mRNA and resolution on a DNA sequencing gel.

ASTROCYTE

A type of glial cell, or support cell, in the brain that can alter the extracellular milieu and ionic concentration owing to the expression of various transporters and channel proteins.

CORTEX

The outer grey matter layer of the forebrain.

RNA INTERFERENCE

(RNAi). A process by which double-stranded RNA silences specifically the expression of homologous genes through degradation of their cognate mRNA.

STRIATUM

A region of the forebrain that comprises the caudate nucleus and putamen; important for regulation of motor movement; it is primarily affected in Huntington disease and secondarily affected in Parkinson disease.

OLIGODENDROCYTE

A type of glial, or support, cell that is found in the central nervous system, and is responsible for the myelination of axons.

NEURITE

Any process that extends from the cell body of the neuron, such as the dendrite or axon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakel, R., Schneider, B. & Svendsen, C. Using human neural stem cells to model neurological disease. Nat Rev Genet 5, 136–144 (2004). https://doi.org/10.1038/nrg1268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing