Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Network biology: understanding the cell's functional organization

Key Points

  • The emergence of new, high-throughput data-collection techniques increasingly allows us to simultaneously interrogate the status of a cell's components and to determine how and when these molecules interact with each other.

  • Various types of molecular interaction webs (including protein–protein interaction, metabolic, signaling and transcription-regulatory networks) emerge from the sum of these interactions that together are principal determinants of the system-scale behaviour of the cell.

  • A major challenge of contemporary biology is to embark on an integrated theoretical and experimental programme to map out, understand and model in quantifiable terms the topological and dynamical properties of the various networks that control the behaviour of the cell.

  • Here, we review the present knowledge of the design principles for the structure and system-scale function of cellular networks, and the evolutionary mechanisms that might have shaped their development.

  • A key insight is that the architectural features of molecular interaction networks within a cell are shared to a large degree by other complex systems, such as the Internet, computer chips or society. This unexpected universality suggests that similar laws govern the development and function of most complex networks in nature.

  • Providing that sufficient formalism will be developed this new conceptual framework could potentially revolutionize our view and practice of molecular cell biology.

Abstract

A key aim of postgenomic biomedical research is to systematically catalogue all molecules and their interactions within a living cell. There is a clear need to understand how these molecules and the interactions between them determine the function of this enormously complex machinery, both in isolation and when surrounded by other cells. Rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize our view of biology and disease pathologies in the twenty-first century.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterizing metabolic networks.
Figure 2: Yeast protein interaction network.
Figure 3: The origin of the scale-free topology and hubs in biological networks.

References

  1. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999). This influential concept paper strongly argues for the modular organization of biological functions.

    Article  CAS  PubMed  Google Scholar 

  2. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Koonin, E. V., Wolf, Y. I. & Karev, G. P. The structure of the protein universe and genome evolution. Nature 420, 218–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Oltvai, Z. N. & Barabási, A. -L. Life's complexity pyramid. Science 298, 763–764 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Wall, M. E., Hlavacek, W. S. & Savageau, M. A. Design of gene circuits: lessons from bacteria. Nature Rev. Genet. 5, 34–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Bray, D. Molecular networks: the top-down view. Science 301, 1864–1865 (2003).

    Article  PubMed  Google Scholar 

  8. Alon, U. Biological networks: the tinkerer as an engineer. Science 301, 1866–1867 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Albert, R. & Barabási, A. -L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  Google Scholar 

  10. Dorogovtsev, S. N. & Mendes, J. F. Evolution of Networks: from Biological Nets to the Internet and WWW. (Oxford University Press, Oxford, 2003).

    Book  Google Scholar 

  11. Bornholdt, S. & Schuster, H. G. Handbook of Graphs and Networks: from the Genome to the Internet (Wiley-VCH, Berlin, Germany, 2003).

    Google Scholar 

  12. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Bollobas, B. Random Graphs (Academic Press, London, 1985).

    Google Scholar 

  14. Erdös, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960).

    Google Scholar 

  15. Barabási, A. -L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999). This paper introduced the concept of scale-free networks and proposed a mechanism for their emergence.

    Article  PubMed  Google Scholar 

  16. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A. -L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    CAS  PubMed  Google Scholar 

  17. Wagner, A. & Fell, D. A. The small world inside large metabolic networks. Proc. R. Soc. Lond. B 268, 1803–1810 (2001). References 16 and 17 provide the first report on the large-scale organization of metabolic networks, showing its scale-free nature.

    Article  CAS  Google Scholar 

  18. Jeong, H., Mason, S. P., Barabási, A. -L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Wagner, A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Li, S. et al. A map of the interactome network of the metazoan, C. elegans. Science 2 Jan 2004 (doi:10.1126/science.1091403)

  22. Yook, S. -H., Oltvai, Z. N. & Barabási, A. -L. Functional and topological characterization of protein interaction networks. Proteomics (in the press).

  23. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Featherstone, D. E. & Broadie, K. Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 24, 267–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Agrawal, H. Extreme self-organization in networks constructed from gene expression data. Phys. Rev. Lett. 89, 268702 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Wuchty, S. Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Apic, G., Gough, J. & Teichmann, S. A. An insight into domain combinations. Bioinformatics 17, S83–S89 (2001).

    Article  PubMed  Google Scholar 

  29. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Milo, R., Shen-Orr, S. S., Itzkovitz, S., Kashtan, N. & Alon, U. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002). References 29 and 30 introduce the concept of motifs in biological and non-biological networks.

    Article  CAS  PubMed  Google Scholar 

  31. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Milgram, S. The small world problem. Psychol. Today 2, 60 (1967).

    Google Scholar 

  33. Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Chung, F. & Lu, L. The average distances in random graphs with given expected degrees. Proc. Natl Acad. Sci. USA 99, 15879–15882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen, R. & Havlin, S. Scale-free networks are ultra small. Phys. Rev. Lett. 90, 058701 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002). This paper reports that in protein interaction networks the highly connected nodes tend to link to less connected proteins, which is the so-called disassortative property.

    Article  CAS  PubMed  Google Scholar 

  37. Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Rzhetsky, A. & Gomez, S. M. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome. Bioinformatics 17, 988–996 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Qian, J., Luscombe, N. M. & Gerstein, M. Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model. J. Mol. Biol. 313, 673–681 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Bhan, A., Galas, D. J. & Dewey, T. G. A duplication growth model of gene expression networks. Bioinformatics 18, 1486–1493 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Pastor-Satorras, R., Smith, E. & Sole, R. Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Vazquez, A., Flammini, A., Maritan, A. & Vespignani, A. Modeling of protein interaction networks. ComPlexUs 1, 38–44 (2003).

    Article  CAS  Google Scholar 

  44. Kim, J., Krapivsky, P. L., Kahng, B. & Redner, S. Infinite-order percolation and giant fluctuations in a protein interaction network. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 66, 055101 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Wagner, A. How the global structure of protein interaction networks evolves. Proc. R. Soc. Lond. B 270, 457–466 (2003).

    Article  CAS  Google Scholar 

  46. Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. 91, 138701 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Ravasz, E. & Barabási, A. -L. Hierarchical organization in complex networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 67, 026112 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Tyson, J. J., Csikasz-Nagy, A. & Novak, B. The dynamics of cell cycle regulation. Bioessays 24, 1095–1109 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. McAdams, H. H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874–1877 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Bhalla, U. S., Ram, P. T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A. -L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002). This paper introduced the concept of hierarchical networks, specifically in the context of metabolism.

    Article  CAS  PubMed  Google Scholar 

  54. Itzkovitz, S., Milo, R., Kashtan, N., Ziv, G. & Alon, U. Subgraphs in random networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 68, 026127 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Wuchty, S., Oltvai, Z. N. & Barabási, A. -L. Evolutionary conservation of motif constituents within the yeast protein interaction network. Nature Genet. 35, 176–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Conant, G. C. & Wagner, A. Convergent evolution of gene circuits. Nature Genet. 34, 264–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Hinman, V. F., Nguyen, A. T., Cameron, R. A. & Davidson, E. H. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc. Natl Acad. Sci. USA 100, 13356–13361 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Pseudofractal scale-free web. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 65, 066122 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I. & Dandekar, T. Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics. 18, 351–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Snel, B., Bork, P. & Huynen, M. A. The identification of functional modules from the genomic association of genes. Proc. Natl Acad. Sci. USA 99, 5890–5895 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Holme, P., Huss, M. & Jeong, H. Subnetwork hierarchies of biochemical pathways. Bioinformatics 19, 532–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Rives, A. W. & Galitski, T. Modular organization of cellular networks. Proc. Natl Acad. Sci. USA 100, 1128–1133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Spirin, V. & Mirny, L. A. Protein complexes and functional modules in molecular networks. Proc. Natl Acad. Sci. USA 100, 12123–12128 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nature Genet. 31, 370–377 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Bader, G. D. & Hogue, C. W. Analyzing yeast protein-protein interaction data obtained from different sources. Nature Biotechnol. 20, 991–997 (2002).

    Article  CAS  Google Scholar 

  67. Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Tornow, S. & Mewes, H. W. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res. 31, 6283–6289 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jansen, R. et al. A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science 302, 449–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnol. 21, 1337–1342 (2003).

    Article  CAS  Google Scholar 

  71. Albert, R., Jeong, H. & Barabási, A. -L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000). This paper addresses the topological robustness and vulnerability of complex networks.

    Article  CAS  PubMed  Google Scholar 

  72. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Gerdes, S. Y. et al. Experimental determination and system-level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu, B. J. et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nature Biotechnol. 20, 1018–1023 (2002).

    Article  CAS  Google Scholar 

  76. Kolisnychenko, V. et al. Engineering a reduced Escherichia coli genome. Genome Res. 12, 640–647 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Krylov, D. M., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13, 2229–2235 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dezso, Z., Oltvai, Z. N. & Barabási, A. -L. Bioinformatics analysis of experimentally determined protein complexes in the yeast, Saccharomyces cerevisiae. Genome Res. 13, 2450–2454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999). References 80 and 81 represents the first theoretical/experimental study on the functional robustness of a cellular sub-network, focusing on the bacterial chemotaxis receptor module.

    Article  CAS  PubMed  Google Scholar 

  82. von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Albert, R. & Othmer, H. G. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Savageau, M. Biochemical Systems Analysis: a Study of Function and Design in Molecular Biology (Addison-Wesley, Reading, 1976).

    Google Scholar 

  86. Fell, D. A. Understanding the Control of Metabolism (Portland, London, 1997).

    Google Scholar 

  87. Schilling, C. H. & Palsson, B. O. The underlying pathway structure of biochemical reaction networks. Proc. Natl Acad. Sci. USA 95, 4193–4198 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Segre, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Edwards, J. S., Ibarra, R. U. & Palsson, B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnol. 19, 125–130 (2001).

    Article  CAS  Google Scholar 

  90. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002). After their theoretical work on flux–balance analysis, the authors of references 89 and 90 show its relevance to predicting experimentally observable metabolic flux values.

    Article  CAS  PubMed  Google Scholar 

  91. Almaas, E., Kovács, B., Vicsek, T., Oltvai, Z. N. & Barabási, A. -L. Global organization of metabolic fluxes in E. coli. Nature, (in the press).

  92. de la Fuente, A., Brazhnik, P. & Mendes, P. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 18, 395–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Kuznetsov, V. A., Knott, G. D. & Bonner, R. F. General statistics of stochastic processes of gene expression in eucaryotic cells. Genetics 161, 1321–1332 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Farkas, I. J., Jeong, H., Vicsek, T., Barabási, A. -L. & Oltvai, Z. N. The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica A 318, 601–612 (2003).

    Article  CAS  Google Scholar 

  95. Grigoriev, A. A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 29, 3513–3519 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ge, H., Liu, Z., Church, G. M. & Vidal, M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genet. 29, 482–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Jansen, R., Greenbaum, D. & Gerstein, M. Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37–46 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goh, K. I., Kahng, B. & Kim, D. Fluctuation-driven dynamics of the internet topology. Phys. Rev. Lett. 88, 108701 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Braunstein, L. A., Buldyrev, S. V., Cohen, R., Havlin, S. & Stanley, H. E. Optimal paths in disordered complex networks. Phys. Rev. Lett. 91, 168701 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Menezes, M. A. & Barabási, A. -L. Fluctuations in network dynamics. Phys. Rev. Lett. (in the press).

  101. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Zeitlinger, J. et al. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Danial, N. N. et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Emmerling, M. et al. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184, 152–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their comments and M. Vidal for sharing unpublished work. This research was supported by grants from the National Institutes of Health, Department of Energy (to A.-L.B. and Z.N.O.) and the National Science Foundation (to A.-L.B.)

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Albert-László Barabási's laboratory

Zoltán N. Oltvai's laboratory

Self-organized networks

Glossary

PROTEIN CHIPS

Similar to cDNA microarrays, this evolving technology involves arraying a genomic set of proteins on a solid surface without denaturing them. The proteins are arrayed at a high enough density for the detection of activity, binding to lipids and so on.

YEAST TWO-HYBRID SCREEN

A genetic approach for the identification of potential protein–protein interactions. Protein X is fused to the site-specific DNA-binding domain of a transcription factor and protein Y to its transcriptional-activation domain — interaction between the proteins reconstitutes transcription-factor activity and leads to expression of reporter genes with recognition sites for the DNA-binding domain.

microRNA

A class of small, non-coding RNAs that are important for development and cell homeostasis, with possible roles in several human disease pathologies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabási, AL., Oltvai, Z. Network biology: understanding the cell's functional organization. Nat Rev Genet 5, 101–113 (2004). https://doi.org/10.1038/nrg1272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing