Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

George Beadle: from genes to proteins

Abstract

George W. Beadle's life spanned much of the period during which genetics changed from an abstract to a molecular science. Beadle himself catalysed the transition from classical to molecular genetics when, together with Edward Tatum, he discovered that each gene is linked to the production of a protein. This article traces his life from a modest farm to the centre of biology and a principal role in the development of the scientific enterprise.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: George Beadle (left) and Edward Tatum (right) receiving their Nobel Prizes.
Figure 2: Boris Ephrussi (left) and George Beadle (right) transferring imaginal discs.
Figure 3: Beadle as an artist.

References

  1. Beadle, G. W. Biochemical Genetics: Reflections (In three lectures), archive W9B365t, Morris Med. Libr. (Univ. Southern California, 1975).

  2. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    Article  CAS  Google Scholar 

  3. Berg, P. & Singer, M. George Beadle: An Uncommon Farmer (Cold Spring Harbor Laboratory Press, New York, 2003).

    Google Scholar 

  4. Sturtevant, A. H. A History of Genetics (Harper & Row, New York, 1965) (Reprinted by Cold Spring Harbor Laboratory Press, 2001)

    Google Scholar 

  5. Fruton, J. S. Proteins, Enzymes, Genes: the Interplay of Chemistry and Biology Ch. 8 (Yale Univ. Press, New Haven, Connecticut, 1999).

    Google Scholar 

  6. Morgan, T. H. Embryology and Genetics (Columbia Univ. Press, New York, 1934).

    Google Scholar 

  7. Schultz, J. Aspects of the relation between genes and development in Drosophila. Am. Nat. 69, 30–54 (1935).

    Article  Google Scholar 

  8. Beadle, G. W. & Ephrussi, B. The differentiation of eye pigments in Drosophila as studied by transplantation. Genetics 21, 225–247 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Beadle, G. W. & Tatum, E. L. Experimental control of development and differentiation. Am. Nat. 75, 1907–1116 (1941).

    Article  Google Scholar 

  10. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    Article  CAS  Google Scholar 

  11. Horowitz, N. H. in Biographical Memoirs 26–53 Vol. 59 (National Acad. Press, 1990).

    Google Scholar 

  12. Pauling, L., Itano, H. A., Singer, S. J. & Wells, I. C. Sickle cell anemia: A molecular disease. Science 110, 543–548 (1949).

    Article  CAS  Google Scholar 

  13. Yanofsky, C. in Enzymes: Units of Biological Structure and Function (ed. Gabler, O. H.) 147–160 (Academic Press, New York, 1956).

    Google Scholar 

  14. Beadle, G. W. in Phage and the Origins of Molecular Biology (eds Cairns, J., Stent, G. S. & Watson, J. D.) 23–32 (Cold Spring Harbor Laboratory of Quantitative Biology, Cold Spring Harbor, New York, 1966).

    Google Scholar 

  15. Garrod, A. E. The incidence of alcaptonuria: a study in chemical individuality. Lancet 2, 53–656 (1902).

    Google Scholar 

  16. Bateson, W. Mendel's Principles of Heredity (Cambridge Univ. Press, London, 1909).

    Book  Google Scholar 

  17. Gross, O. Uber den Einfluss des Blutserums des normalen und des Alcaptonurikens auf Homogentisinsaure. Biochemische Zeitschrift 61, 165–170 (1914).

    CAS  Google Scholar 

  18. Haldane, J. B. S. New Paths in Genetics (Harper Brothers, New York and London, 1941).

    Google Scholar 

  19. Citation in Les Prix Nobel. The Nobel Prize for Physiology or Medicine 32–33 (Stockholm, 1958).

  20. Avery, O. T., Macleod, C. M. & McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a deoxyribonucleic acid fraction isolated form Pneumococcus type III. J. Exp. Med. 79, 137–158 (1944).

    Article  CAS  Google Scholar 

  21. Hershey, A. D. & Chase, M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36, 39–56 (1952).

    Article  CAS  Google Scholar 

  22. Watson, J. D. and Crick, F. H. C. Molecular structure of nucleic acids: a structure of deoxynucleic acids Nature 171, 737–738 (1953).

    Article  CAS  Google Scholar 

  23. Meselson, M. and Stahl, F. W. The replication of DNA in Escherichia coli. Proc. Natl Acad. Sci. USA 44, 671–682 (1958).

    Article  CAS  Google Scholar 

  24. Crick, F. H.C. The structure of nucleic acids and their role in protein synthesis. Biochem. Soc. Symp. 14, 25–26 (1957).

    Google Scholar 

  25. Olby, R. C. The Path to the Double Helix (Univ. Washington Press, Seattle, 1974).

    Google Scholar 

  26. Yanofsky, C. Advancing our knowledge in biochemistry, genetics and microbiology through studies on tryptophan metabolism. Annu. Rev. Biochem. 70, 1–37 (2001).

    Article  CAS  Google Scholar 

  27. Brenner, M. & Ames, B. N. in Metabolic Pathways Vol. 5 (ed. Vogel, H.) 349–387 (Academic Press, New York, 1971).

    Google Scholar 

  28. Hartwell, L. H., Culotti, J. & Reid, B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl Acad. Sci. USA 66, 352–359 (1970).

    Article  CAS  Google Scholar 

  29. Nurse, P. & Thuriaux, P. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 146, 167–178 (1976).

    Article  CAS  Google Scholar 

  30. Lewis, E. B. The bithorax complex: the first fifty years. Int. J. Dev. Biol. 42, 403–415 (1998).

    CAS  Google Scholar 

  31. Nusslein-Volhard, C. The identification of genes controlling development in flies and fishes. Le Prix Nobel 273–294 (1995).

  32. Guarante, L. & Kenyon, C. Genetic pathways that regulate aging in model organisms. Nature 408, 255–262 (2000).

    Article  Google Scholar 

  33. Benzer, S. Genetic dissection of behavior. Sci. Am. 229, 24–33 (1973).

    Article  CAS  Google Scholar 

  34. Crow, J. F. Quarreling geneticists and a diplomat. Genetics 140, 421–426 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Committee on Biological Effects of Atomic Radiation Summary Reports (Natl Acad. Sci. National Research Council, Washington DC, 1960).

  36. Doebley, J. George Beadle's other hypothesis: one gene, one trait. Genetics 158, 487–493 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank all those who encouraged and helped us in writing the book (George Beadle; An Uncommon Farmer) on which this article is based.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

FlyBase

vermilion

cinnabar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, M., Berg, P. George Beadle: from genes to proteins. Nat Rev Genet 5, 949–954 (2004). https://doi.org/10.1038/nrg1494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1494

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing