Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How did alternative splicing evolve?

Key Points

  • Alternative splicing contributes significantly to human proteome complexity and explains the numerical disparity between the low number of human protein-coding genes and the number of human proteins.

  • The appearance of multi-intron genes probably predates that of alternative splicing, and constitutive splicing probably predates exon skipping.

  • Most of the higher eukaryotic organisms use alternative splicing, but some lower eukaryotes do not.

  • Our understanding of the origins of alternative splicing has been limited until recently; however, two theories — one sequence based, the other trans-factor based — have now been proposed.

  • Comparative analysis has recently provided important insights into the differences between alternative and constitutive sites, giving us hints about the steps involved in the evolution of alternative splicing.

  • The 5′ splice site reveals major differences between unicellular organisms such as yeasts and multicellular organisms such as mammals. These differences indicate that three positions in the intronic portion of the 5′ss are less conserved in mammals than in yeasts, whereas the last three positions of the exon are more conserved.

  • These differences are directly related to the plasticity of the 5′ splice sites of multicellular eukaryotes: 5′ss can be used in both constitutive and alternative splicing and for the regulation of the inclusion/skipping ratio in alternative splicing.

  • Alternative splicing might have originated as a result of relaxation of 5′ splice site recognition in organisms that originally could support only constitutive splicing.

Abstract

Alternative splicing creates transcriptome diversification, possibly leading to speciation. A large fraction of the protein-coding genes of multicellular organisms are alternatively spliced, although no regulated splicing has been detected in unicellular eukaryotes such as yeasts. A comparative analysis of unicellular and multicellular eukaryotic 5′ splice sites has revealed important differences — the plasticity of the 5′ splice sites of multicellular eukaryotes means that these sites can be used in both constitutive and alternative splicing, and for the regulation of the inclusion/skipping ratio in alternative splicing. So, alternative splicing might have originated as a result of relaxation of the 5′ splice site recognition in organisms that originally could support only constitutive splicing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 5′ splice site of yeasts, humans and mice.
Figure 2: Exon and intron definition.
Figure 3: Types of alternative splicing.
Figure 4: Base paring between different types of 5′ss and U1 snRNA.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  2. Modrek, B. & Lee, C. A genomic view of alternative splicing. Nature Genet. 30, 13–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Mironov, A. A., Fickett, J. W. & Gelfand, M. S. Frequent alternative splicing of human genes. Genome Res. 9, 1288–1293 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woodley, L. & Valcarcel, J. Regulation of alternative pre-mRNA splicing. Brief. Funct. Genomic. Proteomic. 1, 266–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Qiu, W. G., Schisler, N. & Stoltzfus, A. The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol. Biol. Evol. 21, 1252–1263 (2004). The authors suggest that introns were inserted to genes during evolution.

    Article  CAS  PubMed  Google Scholar 

  6. Coghlan, A. & Wolfe, K. H. Origins of recently gained introns in Caenorhabditis. Proc. Natl Acad. Sci. USA 101, 11362–11367 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barrass, J. D. & Beggs, J. D. Splicing goes global. Trends Genet. 19, 295–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Graur, D. & Li, W. –H. Fundamentals of Molecular Evolution (Sinauer Associates, Sunderland, 1999).

    Google Scholar 

  10. Stamm, S., Zhang, M. Q., Marr, T. G. & Helfman, D. M. A sequence compilation and comparison of exons that are alternatively spliced in neurons. Nucleic Acids Res. 22, 1515–1526 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carmel, I., Tal, S., Vig, I. & Ast, G. Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 10, 828–840 (2004). Comparative analysis of 50,000 human and mouse homologous 5′ss reveal that the 5′ss provide 9 potential positions for U1 binding, but only 7 are involved in base pairing with a typical 5′ss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sorek, R. et al. Minimal conditions for exonization of intronic sequences; 5′ splice site formation in Alu exons. Mol. Cell 14, 221–231 (2004). A demonstration that the type of base pairing between the 5′ss and U1 regulates alternative versus constitutive splicing and also controls the inclusion/skipping ratio in alternative splicing.

    Article  CAS  PubMed  Google Scholar 

  13. Lear, A. L., Eperon, L. P., Wheatley, I. M. & Eperon, I. C. Hierarchy for 5′ splice site preference determined in vivo. J. Mol. Biol. 211, 103–115 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Moss, L. What Genes Can't Do (MIT Press, Cambridge, USA., 2003).

    Google Scholar 

  15. Brow, D. A. Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36, 333–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Hartmuth, K. et al. Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc. Natl Acad. Sci. USA 99, 16719–16724 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, Z., Licklider, L. J., Gygi, S. P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Jurica, M. S. & Moore, M. J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Graveley, B. R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Stoilov, P. et al. Defects in pre-mRNA processing as causes of and predisposition to diseases. DNA Cell Biol. 21, 803–818 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Pick, M., Flores-Flores, C. & Soreq, H. From brain to blood: alternative splicing evidence for the cholinergic basis of mammalian stress responses. Ann. NY Acad. Sci. 1018, 85–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Hastings, M. L. & Krainer, A. R. Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Nissim-Rafinia, M. & Kerem, B. Splicing regulation as a potential genetic modifier. Trends Genet. 18, 123–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Sharp, P. A. “Five easy pieces”. Science 254, 663 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Caceres, J. F. & Kornblihtt, A. R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Wagner, E. J. & Garcia-Blanco, M. A. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell Biol. 21, 3281–3288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faustino, N. A. & Cooper, T. A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Romfo, C. M., Alvarez, C. J., van Heeckeren, W. J., Webb, C. J. & Wise, J. A. Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe. Mol. Cell Biol. 20, 7955–7970 (2000). The authors show that that although S. pombe has SR-like proteins and factors involved in exon definition, there is no alternative splicing in that organism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lareau, L. F., Green, R. E., Bhatnagar, R. S. & Brenner, S. E. The evolving roles of alternative splicing. Curr. Opin. Struct. Biol. 14, 273–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Bon, E. et al. Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res. 31, 1121–1135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuhn, A. N. & Kaufer, N. F. Pre-mRNA splicing in Schizosaccharomyces pombe: regulatory role of a kinase conserved from fission yeast to mammals. Curr. Genet. 42, 241–251 (2003).

    CAS  PubMed  Google Scholar 

  35. Sugnet, C. W., Kent, W. J., Ares, M. Jr & Haussler, D. Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac. Symp. Biocomput. 66–77 (2004). The authors showed that alternative 5′ and 3′ splicing events contain intronic sequences that are conserved between humans and mice near the alternative splice site.

  36. Sorek, R. & Ast, G. Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res. 13, 1631–1637 (2003). This paper demonstrates that alternatively spliced exons that are in humans and mice contain conserved intron regions that flank the conserved exon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sorek, R., Shamir, R. & Ast, G. How prevalent is functional alternative splicing in the human genome? Trends Genet. 20, 68–71 (2004). Alternative exons that are conserved between humans and mice tend to be smaller and their length (in nucleotides) is divisible by 3, which distinguishes them from constitutively spliced exons.

    Article  CAS  PubMed  Google Scholar 

  38. Resch, A., Xing, Y., Alekseyenko, A., Modrek, B. & Lee, C. Evidence for a subpopulation of conserved alternative splicing events under selection pressure for protein reading frame preservation. Nucleic Acids Res. 32, 1261–1269 (2004). The authors show that there is a bias of alternatively spliced exons (which are part of the reading frame) to be multiples of 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhuang, Y., Ma, F., Li-Ling, J., Xu, X. & Li, Y. Comparative analysis of amino acid usage and protein length distribution between alternatively and non-alternatively spliced genes across six eukaryotic genomes. Mol. Biol. Evol. 20, 1978–1985 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Kondrashov, F. A. & Koonin, E. V. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences. Trends Genet. 19, 115–119 (2003). The authors suggest that constitutively spliced exons become alternatively spliced exons (mostly by exon skipping) during evolution.

    Article  CAS  PubMed  Google Scholar 

  41. Burge, C. B., Tuschl, T. & Sharp, P. A. in The RNA World, 525–560 (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  42. Prabhala, G., Rosenberg, G. H. & Kaufer, N. F. Architectural features of pre-mRNA introns in the fission yeast Schizosaccharomyces pombe. Yeast 8, 171–182 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Buvoli, M., Mayer, S. A. & Patton, J. G. Functional crosstalk between exon enhancers, polypyrimidine tracts and branchpoint sequences. EMBO J. 16, 7174–7183 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Modrek, B. & Lee, C. J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nature Genet. 34, 177–180 (2003). Human–mouse comparative analysis reveals that alternative splicing is often associated with recent exon creation and/or loss. So, alternative splicing has the potential ability to create species-specific alternatively spliced exons.

    Article  CAS  PubMed  Google Scholar 

  45. Nurtdinov, R. N., Artamonova, I. I., Mironov, A. A. & Gelfand, M. S. Low conservation of alternative splicing patterns in the human and mouse genomes. Hum. Mol. Genet. 12, 1313–1320 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Kondrashov, F. A. & Koonin, E. V. Origin of alternative splicing by tandem exon duplication. Hum. Mol. Genet. 10, 2661–2669 (2001). Exon duplication could be a major route for generating functional diversity during the evolution of multicellular eukaryotes.

    Article  CAS  PubMed  Google Scholar 

  47. Letunic, I., Copley, R. R. & Bork, P. Common exon duplication in animals and its role in alternative splicing. Hum. Mol. Genet. 11, 1561–1567 (2002). About 10% of all genes contain tandemly duplicated exons that might have a significant role in the rapid evolution of eukaryotic genes.

    Article  CAS  PubMed  Google Scholar 

  48. Lev-Maor, G., Sorek, R., Shomron, N. & Ast, G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300, 1288–1291 (2003). This paper reveals a mechanism that governs 3′ splice-site selection of Alu exons during alternative splicing and identifies mutations that activated the exonization of a silent intronic Alu.

    Article  CAS  PubMed  Google Scholar 

  49. Makalowski, W., Mitchell, G. A. & Labuda, D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 10, 188–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060–1067 (2002). This paper indicates that internal exons that contain an Alu sequence are predominantly, if not exclusively, alternatively spliced.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sipiczki, M. Where does fission yeast sit on the tree of life? Genome Biol. 1, 1011.1–1011.4 (2000).

    Article  Google Scholar 

  52. Yang, Z. & Yoder, A. D. Estimation of the transition/transversion rate bias and species sampling. J. Mol. Evol. 48, 274–283 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002). Sequencing of the mouse genome reveals that most of the genes present in humans and mice are orthologues and the majority of these genes share the same intron/exon arrangement, as well as a high degree of conservation in homologous exon sequences.

    Article  CAS  PubMed  Google Scholar 

  54. Lim, L. P. & Burge, C. B. A computational analysis of sequence features involved in recognition of short introns. Proc. Natl Acad. Sci. USA 98, 11193–11198 (2001). Splice-site analysis among different organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seraphin, B. & Kandels-Lewis, S. 3′ splice site recognition in S. cerevisiae does not require base pairing with U1 snRNA. Cell 73, 803–812 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. O'Keefe, R. T. Mutations in U5 snRNA loop 1 influence the splicing of different genes in vivo. Nucleic Acids Res. 30, 5476–5484 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Segault, V. et al. Conserved loop I of U5 small nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa nuclear extracts. Mol. Cell. Biol. 19, 2782–2790 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kretzner, L., Rymond, B. C. & Rosbash, M. S. cerevisiae U1 RNA is large and has limited primary sequence homology to metazoan U1 snRNA. Cell 50, 593–602 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Zhuang, Y. & Weiner, A. M. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46, 827–835 (1986).

    Article  CAS  PubMed  Google Scholar 

  60. Lund, M. & Kjems, J. Defining a 5′ splice site by functional selection in the presence and absence of U1 snRNA 5′ end. RNA 8, 166–179 (2002). This paper indicates that more than eight base pairs between U1 and the 5′ss will reduce the efficiency of the splicing reaction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Herbert, A. The four Rs of RNA-directed evolution. Nature Genet. 36, 19–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Davis, C. A., Grate, L., Spingola, M. & Ares, M. Jr. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Res. 28, 1700–1706 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vilardell, J., Chartrand, P., Singer, R. H. & Warner, J. R. The odyssey of a regulated transcript. RNA 6, 1773–1780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Okazaki, K. & Niwa, O. mRNAs encoding zinc finger protein isoforms are expressed by alternative splicing of an in-frame intron in fission yeast. DNA Res. 7, 27–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Muhia, D. K. et al. Multiple splice variants encode a novel adenylyl cyclase of possible plastid origin expressed in the sexual stage of the malaria parasite Plasmodium falciparum. J. Biol. Chem. 278, 22014–22022 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Fink, G. R. Pseudogenes in yeast? Cell 49, 5–6 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Dahan, O. & Kupiec, M. The Saccharomyces cerevisiae gene CDC40/PRP17 controls cell cycle progression through splicing of the ANC1 gene. Nucleic Acids Res. 32, 2529–2540 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Freund, M. et al. A novel approach to describe a U1 snRNA binding site. Nucleic Acids Res. 31, 6963–6975 (2003). An indication that a non-Watson–Crick paring can be formed only when it is adjacent to a Watson–Crick pairing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Libri, D., Duconge, F., Levy, L. & Vinauger, M. A role for the Ψ-U mismatch in the recognition of the 5′ splice site of yeast introns by the U1 small nuclear ribonucleoprotein particle. J. Biol. Chem. 277, 18173–18181 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Nandabalan, K., Price, L. & Roeder, G. S. Mutations in U1 snRNA bypass the requirement for a cell type-specific RNA splicing factor. Cell 73, 407–415 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Dibb, N. J. & Newman, A. J. Evidence that introns arose at proto-splice sites. EMBO J. 8, 2015–2021 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sverdlov, A., Rogozin, B., Babenko, V. N. & Koonin V. E. Reconstruction of ancestral protosplice sites. Curr. Biol. 14, 1505–1508 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Long, M. & Deutsch, M. Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol. Biol. Evol. 16, 1528–1534 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Sverdlov, A. V., Rogozin, I. B., Babenko, V. N. & Koonin, E. V. Evidence of splice signal migration from exon to intron during intron evolution. Curr. Biol. 13, 2170–2174 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Robart, A. R., Montgomery, N. K., Smith, K. L. & Zimmerly, S. Principles of 3′ splice site selection and alternative splicing for an unusual group II intron from Bacillus anthracis. RNA 10, 854–862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kempken, F. & Windhofer, F. Alternative splicing of transcripts of the transposon Restless is maintained in the foreign host Neurospora crassa and can be modified by introducing mutations at the 5′ and 3′ splice sites. Curr. Genet. 46, 59–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Farrer, T., Roller, A. B., Kent, W. J. & Zahler, A. M. Analysis of the role of Caenorhabditis elegans GC-AG introns in regulated splicing. Nucleic Acids Res. 30, 3360–3367 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thanaraj, T. A. & Clark, F. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions. Nucleic Acids Res. 29, 2581–2593 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reed, R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6, 215–220 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank I. Carmel, N. Sela and A. Goren for the assembly of the 5′ss datasets, and A. Weiner, M. Kupiec, E. V. Koonin and an anonymous referee for many helpful comments. G. A. is supported by grants from the Israel Academy of Science and, in part, by grants from the Israel Cancer Association, Familial Dysantonomia Hope, the MOP (research and development), India-Israel and the chief scientist of the Israel Health Ministry.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez

IKBKAP

ADARB2

FURTHER INFORMATION

Saccharomyces Genome Database

Schizosaccharomyces pombe Gene Database

Glossary

PURIFYING SELECTION

Selection against deleterious alleles that arise in a population, preventing their increase in frequency and assuring their eventual disappearance from the gene pool.

SR PROTEINS

A group of highly conserved, serine- and arginine-rich splicing regulatory proteins in metazoans.

hnRNP PROTEINS

A large set of proteins that bind to pre-mRNA.

BRANCH SITE

A splicing signal located upstream of the 3′ end of the intron.

GROUP II INTRONS

Autocatalytic introns that are found in lower eukaryotic and prokaryotic organisms. These introns posses enzymatic properties that enable them to remove themselves from RNA precursor and ligate the flanking exons.

RETROTRANSPOSONS

A mobile genetic element; its DNA is transcribed into RNA, which is reverse-transcribed into DNA and then is inserted into a new location in the genome.

GENE CONVERSION

A non-reciprocal recombination process that causes one sequence to be converted into the other.

STEM STRUCTURE

A region of base pairing between two stands of RNA or DNA.

HEMIASCOMYCETOUS YEASTS

A group of yeast that includes S. cerevisiae and at least 13 other yeasts species that have a small genome size and a low frequency of introns.

STACKING ENERGY

Energy contributions from base pair stacking.

WOBBLE SITE

Pairing between the codon and anticodons of tRNA at the last codon position. Wobble enables the anticodon base to form hydrogen bonds with bases other than those in standard base pairs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ast, G. How did alternative splicing evolve?. Nat Rev Genet 5, 773–782 (2004). https://doi.org/10.1038/nrg1451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing