Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The development and regulation of gene repair

Key Points

  • A new strategy for gene therapy that aims to correct genetic mutations directly in the chromosome is under development.

  • This approach uses single-stranded DNA to activate the DNA repair pathways of the cell and to direct the exchange of mutant bases at precise locations in the chromosome.

  • These single-stranded DNA molecules can be delivered into cells without the aid of viruses, which are the classical vector/vehicle that is used for gene therapy.

  • If successful, the 'gene-repair process' will probably reduce the alarming side effects that are encountered by the viral gene-therapy strategies.

  • The key to success lies in the capacity to correct or reverse mutations at a frequency that will bring therapeutic benefits.

  • The progress, feasibility and applicability of this strategy are reviewed, and approaches towards overcoming the barriers to success are also discussed.

Abstract

A technique that can direct the repair of a genetic mutation in a human chromosome using the DNA repair machinery of the cell is under development. Although this approach is not as mature as other forms of gene therapy and fundamental problems continue to arise, it promises to be the ultimate therapy for many inherited disorders. There is a continuing effort to understand the potential and the limitations of this controversial approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The evolution of the vector.
Figure 2: The gene-repair process.
Figure 3: The yeast chromosomal targeting system and modified single-stranded DNA oligonucleotide Hyg3S/74NT.
Figure 4: Model of the DNA-pairing phase of gene repair.
Figure 5: Strategy of dual targeting.

Similar content being viewed by others

References

  1. Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nature Rev. Genet. 4, 346–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Andreani, M. et al. Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplant 25, 401–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi, S. et al. Mixed chimerism following in utero hematopoietic stem cell transplantation in murine models of hemoglobinopathy. Exp. Hematol. 31, 176–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Vasquez, K. M., Marburger, K., Intody, Z. & Wilson, J. H. Manipulating the mammalian genome by homologous recombination. Proc. Natl Acad. Sci. USA 98, 8403–8410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kotani, H., Sekiguchi, J. M., Dutta, S. & Kmiec, E. B. Genetic recombination of nucleosomal templates is mediated by transcription. Mol. Gen. Genet. 244, 410–419 (1994). This paper describes the initial observations that led to the design of the chimaera.

    Article  CAS  PubMed  Google Scholar 

  6. Kotani, H. & Kmiec, E. B. DNA cruciforms facilitate in vitro strand transfer on nucleosomal templates. Mol. Gen. Genet. 243, 681–690 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moerschell, R. P., Tsunasawa, S. & Sherman, F. Transformation of yeast with synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 85, 524–528 (1988). A pioneering paper that describes the use of oligonucleotides in yeast targeting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamamoto, T., Moerschell, R. P., Wakem, L. P., Komar-Panicucci, S. & Sherman, F. Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics 131, 811–819 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto, T., Moerschell, R. P., Wakem, L. P., Ferguson, D. & Sherman, F. Parameters affecting the frequencies of transformation and co-transformation with synthetic oligonucleotides in yeast. Yeast 8, 935–948 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, C. R., Keown, W., Lowe, L., Kirschling, D. & Kucherlapati, R. Homologous recombination involving small single-stranded oligonucleotides in human cells. New Biol. 1, 223–227 (1989).

    CAS  PubMed  Google Scholar 

  12. Gamper, H. B. et al. The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res. 28, 4332–4339 (2000). This article reports that gene repair using single-stranded oligonucleotides is as active as the chimaera and easier to synthesize.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kmiec, E. B. Targeted gene repair. Gene Ther. 6, 1–3 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Kmiec, E. B., Kren, B. T. & Steer, C. J. in The Development of Human Gene Therapy (ed. Friedmann, T.) 101–110 (Cold Spring Harbor Laboratory Press, New York, 1998).

    Google Scholar 

  15. Kotani, H. & Kmiec, E. B. Transcription activates RecA-promoted homologous pairing of nucleosomal DNA. Mol. Cell Biol. 14, 1949–1955 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kotani, H. et al. RNA facilitates RecA-mediated DNA pairing and strand transfer between molecules bearing limited regions of homology. Mol. Gen. Genet. 250, 626–634 (1996). This was one of the first studies to show that RNA can reduce the level of homology that is required for strand exchange.

    Article  CAS  PubMed  Google Scholar 

  17. Cole-Strauss, A. et al. Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract. Nucleic Acids Res. 27, 1323–1330 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Igoucheva, O., Alexeev, V. & Yoon, K. Targeted gene correction by small single-stranded oligonucleotides in mammalian cells. Gene Ther. 8, 391–399 (2001). A careful study of the effects of single-stranded oligonucleotides in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  19. Igoucheva, O. & Yoon, K. Targeted single-base correction by RNA–DNA oligonucleotides. Hum. Gene Ther. 11, 2307–2312 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Igoucheva, O., Peritz, A. E., Levy, D. & Yoon, K. A sequence-specific gene correction by an RNA–DNA oligonucleotide in mammalian cells characterized by transfection and nuclear extract using a lacZ shuttle system. Gene Ther. 6, 1960–1971 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Gamper, H. B., Nulf, C. J., Corey, D. R. & Kmiec, E. B. The synaptic complex of RecA protein participates in hybridization and inverse strand exchange reactions. Biochemistry 42, 2643–2655 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, L., Rice, M. C. & Kmiec, E. B. In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides. Nucleic Acids Res. 29, 4238–4250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, L., Cheng, S., van Brabant, A. J. & Kmiec, E. B. Rad51p and Rad54p, but not Rad52p, elevate gene repair in Saccharomyces cerevisiae directed by modified single-stranded oligonucleotide vectors. Nucleic Acids Res. 31, 2742–2750 (2002). This study was the first to show that Rad51 stimulates gene repair in yeast.

    Article  Google Scholar 

  24. Liu, L. et al. Strand bias in targeted gene repair is influenced by transcriptional activity. Mol. Cell Biol. 22, 3852–3863 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brachman, E. E. & Kmiec, E. B. Targeted gene repair of cyc1 mutations in Saccharomyces cerevisiae directed by modified single-stranded DNA oligonucleotides. Genetics 163, 527–538 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Metz, R. et al. Mode of action of RNA/DNA oligonucleotides: progress in the development of gene repair as a therapy for α(1)-antitrypsin deficiency. Chest 121, 91–97 (2002).

    Article  Google Scholar 

  27. Jayasena, V. K. & Johnston, B. H. Complement-stabilized D-loop. RecA-catalyzed stable pairing of linear DNA molecules at internal sites. J. Mol. Biol. 230, 1015–1024 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Belotserkovskii, B. P., Reddy, G. & Zarling, D. A. DNA hybrids stabilized by heterologies. Biochemistry 38, 10785–10792 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Belotserkovskii, B. P. & Zarling, D. A. Peptide nucleic acid (PNA) facilitates multistranded hybrid formation between linear double-stranded DNA targets and RecA protein-coated complementary single-stranded DNA probes. Biochemistry 41, 3686–3692 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Parekh-Olmedo, H., Drury, M. & Kmiec, E. B. Targeted nucleotide exchange in Saccharomyces cerevisiae directed by short oligonucleotides containing locked nucleic acids. Chem. Biol. 9, 1073–1084 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Drury, M. & Kmiec, E. B. DNA pairing is an important step in the process of targeted nucleotide exchange. Nucleic Acids Res. 31, 899–910 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gruenert, D. C. Opportunities and challenges in targeting genes for therapy. Gene Ther. 6, 1347–1348 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Sangiuolo, F. et al. In vitro correction of cystic fibrosis epithelial cell lines by small fragment homologous replacement (SFHR) technique. BMC Med. Genet. 3, 8 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kapsa, R. et al. In vivo and in vitro correction of the mdx dystrophin gene nonsense mutation by short-fragment homologous replacement. Hum. Gene Ther. 12, 629–642 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, X. M. et al. Targeted correction of genomic single base-pair mutations using adeno-associated virus under non-selective conditions. Mol. Ther. 7, 159–160 (2003).

    Article  Google Scholar 

  36. Check, E. Harmful potential of viral vectors fuels doubts over gene therapy. Nature 423, 573–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Brachman, E. E. & Kmiec, E. B. The 'biased' evolution of targeted gene repair. Curr. Opin. Mol. Ther. 4, 171–176 (2002).

    CAS  PubMed  Google Scholar 

  38. Andersen, M. S., Sorensen, C. B., Bolund, L. & Jensen, T. G. Mechanisms underlying targeted gene correction using chimeric RNA/DNA and single-stranded DNA oligonucleotides. J. Mol. Med. 80, 770–781 (2002). This is a good review of the field of oligonucleotide targeting, with an emphasis on the mechanism.

    Article  CAS  PubMed  Google Scholar 

  39. Thorpe, P., Stevenson, B. J. & Porteous, D. J. Optimising gene repair strategies in cell culture. Gene Ther. 9, 700–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Thorpe, P. H., Stevenson, B. J. & Porteous, D. J. Functional correction of episomal mutations with short DNA fragments and RNA–DNA oligonucleotides. J. Gene Med. 4, 195–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Yanez, R. J. & Porter, A. C. Gene targeting is enhanced in human cells overexpressing hRAD51. Gene Ther. 6, 1282–1290 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Yanez, R. J. & Porter, A. C. Influence of DNA delivery method on gene targeting frequencies in human cells. Somat. Cell Mol. Genet. 25, 27–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Mazin, A. V., Bornarth, C. J., Solinger, J. A., Heyer, W. D. & Kowalczykowski, S. C. Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol. Cell 6, 583–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Mazin, A. V., Zaitseva, E., Sung, P. & Kowalczykowski, S. C. Tailed duplex DNA is the preferred substrate for Rad51 protein-mediated homologous pairing. EMBO J. 19, 1148–1156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baumann, P., Benson, F. E. & West, S. C. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Igoucheva, O., Alexeev, V., Pryce, M. & Yoon, K. Transcription affects formation and processing of intermediates in oligonucleotide-mediated gene alteration. Nucleic Acids Res. 31, 2659–2670 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lahue, R. S., Au, K. G. & Modrich, P. DNA mismatch correction in a defined system. Science 245, 160–164 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Buermeyer, A. B., Deschenes, S. M., Baker, S. M. & Liskay, R. M. Mammalian DNA mismatch repair. Annu. Rev. Genet. 33, 533–564 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Kolodner, R. D. & Marsischky, G. T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Rice, M. C., Bruner, M., Czymmek, K. & Kmiec, E. B. In vitro and in vivo nucleotide exchange directed by chimeric RNA/DNA oligonucleotides in Saccharomyces cerevisiae. Mol. Microbiol. 40, 857–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Batty, D. P. & Wood, R. D. Damage recognition in nucleotide excision repair of DNA. Gene 241, 193–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Wood, R. D. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23465–23468 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cole-Strauss, A. et al. Correction of the mutation responsible for sickle cell anemia by an RNA–DNA oligonucleotide. Science 273, 1386–1389 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Xiang, Y., Cole-Strauss, A., Yoon, K., Gryn, J. & Kmiec, E. B. Targeted gene conversion in a mammalian CD34+-enriched cell population using a chimeric RNA/DNA oligonucleotide. J. Mol. Med. 75, 829–835 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, H., Agarwal, S., Kmiec, E. & Davis, B. R. Targeted β-globin gene conversion in human hematopoietic CD34(+) and Lin(−)CD38(−)cells. Gene Ther. 9, 118–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Alexeev, V. & Yoon, K. Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA–DNA oligonucleotide. Nature Biotechnol. 16, 1343–1346 (1998).

    Article  CAS  Google Scholar 

  58. Alexeev, V., Igoucheva, O., Domashenko, A., Cotsarelis, G. & Yoon, K. Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA–DNA oligonucleotide. Nature Biotechnol. 18, 43–47 (2000).

    Article  CAS  Google Scholar 

  59. Yoon, K., Cole-Strauss, A. & Kmiec, E. B. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide. Proc. Natl Acad. Sci. USA 93, 2071–2076 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kren, B. T., Cole-Strauss, A., Kmiec, E. B. & Steer, C. J. Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotide. Hepatology 25, 1462–1468 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Santana, E., Peritz, A. E., Lyer, S., Uitto, J. & Yoon, K. Different frequency of gene targeting events by the RNA–DNA oligonucleotide among epithelial cells. J. Invest. Dermatol. 111, 1172–1177 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Kren, B. T., Bandyopadhyay, P. & Steer, C. J. In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nature Med. 4, 285–290 (1998). This study presents in vivo evidence of chimeric oligonucleotide activity in animals, which is supported by strong genotypic and phenotypic data.

    Article  CAS  PubMed  Google Scholar 

  63. Bandyopadhyay, P., Ma, X., Linehan-Stieers, C., Kren, B. T. & Steer, C. J. Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides. Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor. J. Biol. Chem. 274, 10163–10172 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Tagalakis, A. D., Graham, I. R., Riddell, D. R., Dickson, J. G. & Owen, J. S. Gene correction of the apolipoprotein (Apo) E2 phenotype to wild-type ApoE3 by in situ chimeraplasty. J. Biol. Chem. 276, 13226–13230 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Lai, L. -W. & Lien, Y. H. Homologous recombination based gene therapy. Expt. Nephrol. 7, 11–14 (1999).

    Article  CAS  Google Scholar 

  66. Lai, L. W. & Lien, Y. H. Chimeric RNA/DNA oligonucleotide-based gene therapy. Kidney Int. 61 (Suppl.), 47–51 (2002).

    Article  Google Scholar 

  67. Bartlett, R. J. et al. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nature Biotechnol. 18, 615–622 (2000). This article describes gene repair in a dog model for muscular dystrophy, along with an excellent discussion of what each assay shows.

    Article  CAS  Google Scholar 

  68. Rando, T. A., Disatnik, M. H. & Zhou, L. Z. Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides. Proc. Natl Acad. Sci. USA 97, 5363–5368 (2000). An excellent article that outlines gene repair in a well-characterized animal model and provides a good phenotypic analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bertoni, C. & Rando, T. A. Dystrophin gene repair in mdx muscle precursor cells in vitro and in vivo mediated by RNA–DNA chimeric oligonucleotides. Hum. Gene Ther. 13, 707–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Li, Z. H., Liu, D. P., Yin, W. X., Guo, Z. C. & Liang, C. C. Targeted correction of the point mutations of β-thalassemia and targeted mutagenesis of the nucleotide associated with HPFH by RNA/DNA oligonucleotides: potential for β-thalassemia gene therapy. Blood Cells Mol. Dis. 27, 530–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. van der Steege, G. et al. Persistent failures in gene repair. Nature Biotechnol. 19, 305–306 (2001).

    Article  CAS  Google Scholar 

  72. Thomas, K. R. & Capecchi, M. R. Recombinant DNA technique and sickle cell anemia research. Science 275, 1404–1405 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Graham, I. R. et al. Gene repair validation. Nature Biotechnol. 19, 507–508 (2001).

    Article  CAS  Google Scholar 

  74. Thorpe, P. H., Stevens, B. J. & Porteous, D. J. Comparing two strategies for functional gene correction (2001).

  75. Bandyopadhyay, P., Kren, B. T., Ma, X. & Steer, C. J. Enhanced gene transfer into HuH-7 cells and primary rat hepatocytes using targeted liposomes and polyethylenimine. Biotechniques 25, 282–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Degtyareva, N., Subramanian, D. & Griffith, J. D. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases. J. Biol. Chem. 276, 8778–8784 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Dudenhoffer, C., Rohaly, G., Will, K., Deppert, W. & Wiesmuller, L. Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol. Cell Biol. 18, 5332–5342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Colosimo, A., Goncz, K. K., Novelli, G., Dallapiccola, B. & Gruenert, D. C. Targeted correction of a defective selectable marker gene in human epithelial cells by small DNA fragments. Mol. Ther. 3, 178–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Krejci, L., Damborsky, J., Thomsen, B., Duno, M. & Bendixen, C. Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol. Cell Biol. 21, 966–976 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rice, K. P., Eggler, A. L., Sung, P. & Cox, M. M. DNA pairing and strand exchange by the Escherichia coli RecA and yeast Rad51 proteins without ATP hydrolysis: on the importance of not getting stuck. J. Biol. Chem. 276, 38570–38581 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Alexiadis, V. & Kadonaga, J. T. Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Genes Dev. 16, 2767–2771 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vispe, S., Cazaux, C., Lesca, C. & Defais, M. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res. 26, 2859–2864 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Burke, D. T., Carle, G. F. & Olson, M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812 (1987).

    Article  CAS  PubMed  Google Scholar 

  84. Cimino, G. D., Gamper, H. B., Isaacs, S. T. & Hearst, J. E. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu. Rev. Biochem. 54, 1151–1193 (1985).

    Article  CAS  PubMed  Google Scholar 

  85. Faruqi, A. F., Seidman, M. M., Segal, D. J., Carroll, D. & Glazer, P. M. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol. Cell Biol. 16, 6820–6828 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sandor, Z. & Bredberg, A. Triple helix directed psoralen adducts induce a low frequency of recombination in an SV40 shuttle vector. Biochim. Biophys. Acta 1263, 235–240 (1995).

    Article  PubMed  Google Scholar 

  87. Vasquez, K. M., Wensel, T. G., Hogan, M. E. & Wilson, J. H. High-affinity triple helix formation by synthetic oligonucleotides at a site within a selectable mammalian gene. Biochemistry 34, 7243–7251 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Vasquez, K. M., Wensel, T. G., Hogan, M. E. & Wilson, J. H. High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene. Biochemistry 35, 10712–10719 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Kren, B. T., Wong, P. Y. & Steer, C. J. Short, single-stranded oligonucleotides mediate targeted nucleotide conversion using extracts from isolated liver mitochondria. DNA Repair 2, 531–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Dekker, M., Brouwers, C. & Te, R. H. Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res. 31, 27 (2003). This paper represents an important step in the use of single-stranded DNA for targeting in mouse ES cells.

    Article  CAS  Google Scholar 

  91. Fyodorov, D. V. & Kadonaga, J. T. The many faces of chromatin remodeling: SWItching beyond transcription. Cell 106, 523–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Britt, A. B. & May, G. D. Re-engineering plant gene targeting. Trends Plant Sci. 8, 90–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Lu, I. -L. et al. Correction/mutation of acid α-D-glucosidase gene by modified single-stranded oligonucleotides: in vitro and in vivo studies. Gene Therapy (in the press). One of the most complete studies using single-stranded vectors, with convincing genotype and phenotype evidence of conversion.

  94. Parekh-Olmedo, H., Czymmek, K. & Kmiec, E. B. Targeted gene repair in mammalian cells using chimeric RNA/DNA oligonucleotides and modified single-stranded vectors. Sci. STKE 2001, 1 (2001).

    Article  Google Scholar 

  95. Fortin, G. S. & Symington, L. S. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51–DNA complexes. EMBO J. 21, 3160–3170 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kren, B. T. et al. Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of crigler-najjar syndrome type I with a chimeric oligonucleotide. Proc. Natl Acad. Sci. USA 96, 10349–10354 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gamper, H. B. et al. A plausible mechanism for gene correction by chimeric oligonucleotides. Biochemistry 39, 5808–5816 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Chen, Z. et al. Mitochondria isolated from liver contain the essential factors required for RNA/DNA oligonucleotide-targeted gene repair. Biochem. Biophys. Res. Commun. 285, 188–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Kmiec, E. B., Johnson, C. & May, G. D. Chloroplast lysates support directed mutagenesis via modified DNA and chimeric RNA/DNA oligonucleotides. Plant J. 27, 267–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Rice, M. C., May, G. D., Kipp, P. B., Parekh, H. & Kmiec, E. B. Genetic repair of mutations in plant cell-free extracts directed by specific chimeric oligonucleotides. Plant Physiol. 123, 427–438 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beetham, P. R., Kipp, P. B., Sawycky, X. L., Arntzen, C. J. & May, G. D. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl Acad. Sci. USA 96, 8774–8778 (1999). The first report of gene repair in plants using chimeric RNA–DNA oligonucleotides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kochevenko, A. & Willmitzer, L. Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate syntase gene. Plant Physiol. 132, 174–184 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu, T. et al. Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc. Natl Acad. Sci. USA 96, 8768–8773 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhu, T., Mettenburg, K., Peterson, D. J., Tagliani, L. & Baszczynski, C. L. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nature Biotechnol. 18, 555–558 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to many of our friends and colleagues who have been so supportive and encouraged us to be persistent. We thank the NIH and NaPro BioTherapeutics for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric B. Kmiec.

Related links

Related links

Databases

LocusLink

HBB

MSH2

MSH6

RAD51

RAD52

RAD54

OMIM

altered apolipoprotein E2

β-thalassemia

CAII deficiency

Crigler-Najjar

Pompe disease

sickle cell disease

Saccharomyces Genome Database

rad51

rad52

Further Information

Eric B. Kmiec's laboratory

Glossary

PHOSPHOROTHIOATE

A modification that provides nuclease resistance in an oligonucleotide in which a non-bridging oxygen is replaced by a sulphur atom in the oligophosphate backbone.

EPISOMAL

In the context of transient transfection, this term refers to a plasmid target that is extra chromosomal.

FLUORESCENCE-ACTIVATED CELL SORTING

(FACS). A method whereby dissociated and individual living cells are sorted, in a liquid stream, according to the intensity of fluorescence that they emit as they pass through a laser beam.

PSORALEN

A photosensitizing chemical that is used for determining RNA–DNA structures in cells, and intercalates between two strands in duplex DNA. When attached to an oligonucleotide, psoralen forms interstrand crosslinks. When exposed to ultraviolet light, it forms photoadducts, crosslinked chemical bonds within adjacent bases.

MONO-ADDUCTS

A form of DNA lesion induced by DNA damaging agents, such as ultraviolet radiation, which on longer exposure can be converted into covalent crosslinks in the DNA. Mono-adducts can, to an extent, induce recombination in yeast, mammalian and bacterial cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Parekh-Olmedo, H. & Kmiec, E. The development and regulation of gene repair. Nat Rev Genet 4, 679–689 (2003). https://doi.org/10.1038/nrg1156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing