Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

An everlasting pioneer: the story of Antirrhinum research

Abstract

Despite the tremendous success of Arabidopsis thaliana, no single model can represent the vast range of form that is seen in the 250,000 existing species of flowering plants (angiosperms). Here, we consider the history and future of an alternative angiosperm model — the snapdragon Antirrhinum majus. We ask what made Antirrhinum attractive to the earliest students of variation and inheritance, and how its use led to landmark advances in plant genetics and to our present understanding of plant development. Finally, we show how the wide diversity of Antirrhinum species, combined with classical and molecular genetics — the two traditional strengths of Antirrhinum — provide an opportunity for developmental, evolutionary and ecological approaches. These factors make A. majus an ideal comparative angiosperm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Erwin Baur.
Figure 2: Size comparison between mature Antirrhinum and Arabidopsis flowers.
Figure 3: Mutants of Antirrhinum majus.
Figure 4: Floral asymmetry.
Figure 5: Natural variation in the genus Antirrhinum.

References

  1. Stubbe, H. Genetik und Zytologie von Antirrhinum L. sect. Antirrhinum (Gustav Fischer, Jena, 1966).

    Google Scholar 

  2. Darwin, C. R. Variation of Animals and Plants Under Domestication (John Murray, London, 1868).

    Google Scholar 

  3. Stubbe, H. Neue Mutanten von Antirrhinum majus L. Kulturpflanze 22, 189–213 (1974).

    Article  Google Scholar 

  4. McClintock, B. The origin and behaviour of mutable loci in maize. Proc. Natl Acad. Sci. 36, 344–355 (1950).

    Article  CAS  Google Scholar 

  5. Stickland, R. G. & Harrison, B. J. Precursors and genetic control of pigmentation. I. Induced biosynthesis of pelargonidin, cyanidin and delphidin in Antirrhinum majus. Heredity 33, 108–112 (1974).

    Article  Google Scholar 

  6. Harrison, B. J. & Carpenter, R. A comparison of the instabilities at the nivea and pallida loci in Antirrhinum majus. Heredity 31, 309–323 (1973).

    Article  Google Scholar 

  7. Harrison, B. & Carpenter, R. Resurgence of genetic instability in Antirrhinum majus. Mutat. Res. 63, 47–66 (1979).

    Article  CAS  Google Scholar 

  8. Wienand, U. et al. A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations. Mol. Gen. Genet. 187, 195–201 (1982).

    Article  CAS  Google Scholar 

  9. Bonas, U., Sommer, H. & Saedler, H. The 17-Kb Tam-1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene. EMBO J. 3, 1015–1019 (1984).

    Article  CAS  Google Scholar 

  10. Martin, C., Carpenter, R., Sommer, H., Saedler, H. & Coen, E. S. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the Pallida locus by transposon tagging. EMBO J. 4, 1625–1630 (1985).

    Article  CAS  Google Scholar 

  11. Sommer, H., Carpenter, R., Harrison, B. J. & Saedler, H. The transposable element Tam3 of Antirrhinum majus generates a novel type of sequence alteration upon excision. Mol. Gen. Genet. 199, 225–231 (1985).

    Article  CAS  Google Scholar 

  12. Gierl, A. & Saedler, H. in Nucleic Acids and Molecular Biology Vol. 3 (eds. Eckstein, F. & Lilley, D. M. J.) 251–259 (Springer, Berlin, Heidelberg, 1989).

    Book  Google Scholar 

  13. Schwarz-Sommer, Z. & Saedler, H. Plant transposable elements 1984. Oxford Surv. Plant Mol. Cell Biol. 2, 353–360 (1985).

    CAS  Google Scholar 

  14. Coen, E. S., Carpenter, R. & Martin, C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285–296 (1986).

    Article  CAS  Google Scholar 

  15. Sommer, H., Bonas, U. & Saedler, H. Transposon-induced alterations in the promoter region affect transcription of the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 211, 49–55 (1988).

    Article  CAS  Google Scholar 

  16. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  Google Scholar 

  17. Carpenter, R. & Coen, E. S. Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers. Development 121, 19–26 (1995).

    CAS  PubMed  Google Scholar 

  18. Perbal, M. -C., Haughn, G., Saedler, H. & Schwarz-Sommer, Z. Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122, 3433–3441 (1996).

    CAS  PubMed  Google Scholar 

  19. Sommer, H. et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605–613 (1990).

    Article  CAS  Google Scholar 

  20. Tröbner, W. et al. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4693–4704 (1992).

    Article  Google Scholar 

  21. Coen, E. S. et al. floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63, 1311–1322 (1990).

    Article  CAS  Google Scholar 

  22. Huijser, P. et al. Bractomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11, 1239–1249 (1992).

    Article  CAS  Google Scholar 

  23. Simon, R., Carpenter, R., Doyle, S. & Coen, E. Fimbriata controls flower development by mediating between meristem and organ identity genes. Cell 78, 99–107 (1994).

    Article  CAS  Google Scholar 

  24. Bradley, D. et al. Control of inflorescence architecture in Antirrhinum. Nature 379, 791–797 (1996).

    Article  CAS  Google Scholar 

  25. Baur, E. Untersuchungen über das wesen, die entstehung und die vererbung von rassenunterschieden bei Antirrhinum majus. Bibl. Genetica 4, 101–103 (1924).

    Google Scholar 

  26. Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. & Sommer, H. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250, 931–936 (1990).

    Article  CAS  Google Scholar 

  27. Davies, B., Egea-Cortines, M., de Andrade Silva, E., Saedler, H. & Sommer, H. Multiple interactions amongst floral homeotic MADS-box proteins. EMBO J. 15, 4330–4343 (1996).

    Article  CAS  Google Scholar 

  28. Egea-Cortines, M., Saedler, H. & Sommer, H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370–5379 (1999).

    Article  CAS  Google Scholar 

  29. Zachgo, S. et al. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121, 2861–2875 (1995).

    CAS  PubMed  Google Scholar 

  30. Davies, B., Sommer, H. & Schwarz-Sommer, Z. in Development: Genetics, Epigenetics and Environmental Regulation (eds. Russo, V. A. E., Cove, D. J., Edgar, L. G. & Salamini, F.) 167–183 (Springer, Berlin, Heidelberg, New York, Tokyo, 1999).

    Book  Google Scholar 

  31. Coen, E. S. & Meyerowitz, E. M. The war of the whorls: genetic interactions controlling flower development. Nature 353, 31–37 (1991).

    Article  CAS  Google Scholar 

  32. Davies, B. et al. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J. 18, 4023–4034 (1999).

    Article  CAS  Google Scholar 

  33. Motte, P., Saedler, H. & Schwarz-Sommer, Z. STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis. Development 125, 71–84 (1998).

    CAS  PubMed  Google Scholar 

  34. Keck, E., McSteen, P., Carpenter, R. & Coen, E. Separation of genetic functions controlling organ identity in flowers. EMBO J. 22, 1058–1066 (2003).

    Article  CAS  Google Scholar 

  35. Efremova, N. et al. Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis. Development 128, 2661–2671 (2001).

    CAS  PubMed  Google Scholar 

  36. Glover, B. J. & Martin, C. The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80, 778–784 (1998).

    Article  Google Scholar 

  37. Martin, C. & Gerats, T. Control of pigment biosynthesis genes during petal development. Plant Cell 5, 1253–1264 (1993).

    Article  CAS  Google Scholar 

  38. Odell, E., Raguso, R. A. & Jones, K. N. Bumblebee foraging responses to variation in floral scent and color in snapdragons (Antirrhinum: Scrophulariaceae). Am. Midland Nat. 142, 257–265 (1999).

    Article  Google Scholar 

  39. Dudareva, N. et al. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12, 949–961 (2000).

    Article  CAS  Google Scholar 

  40. Noda, K., Glover, B. J., Linstead, P. & Martin, C. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369, 661–664 (1994).

    Article  CAS  Google Scholar 

  41. Martin, C. et al. The mechanics of cell fate determination in petals. Philos. Trans. R. Soc. Lond. B 357, 809–813 (2002).

    Article  CAS  Google Scholar 

  42. Luo, D., Carpenter, R., Vincent, C., Copsey, L. & Coen, E. Origin of floral asymmetry in Antirrhinum. Nature 383, 794–799 (1996).

    Article  CAS  Google Scholar 

  43. Luo, D. et al. Control of organ asymmetry in flowers of Antirrhinum. Cell 99, 367–376 (1999).

    Article  CAS  Google Scholar 

  44. Carpenter, R. & Coen, E. S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 4, 1483–1493 (1990).

    Article  CAS  Google Scholar 

  45. Almeida, J., Rocheta, M. & Galego, L. Genetic control of flower shape in Antirrhinum majus. 124, 1387–1392 (1997).

  46. Galego, L. & Almeida, J. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev. 16, 880–891 (2002).

    Article  CAS  Google Scholar 

  47. Cubas, P., Coen, E. & Zapater, J. M. M. Ancient asymmetries in the evolution of flowers. Curr. Biol. 11, 1050–1052 (2001).

    Article  CAS  Google Scholar 

  48. Gustafson, A. Linnaeus' peloria: the history of a monster. Theor. Appl. Genet. 54, 241–248 (1979).

    Article  Google Scholar 

  49. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    Article  CAS  Google Scholar 

  50. Rolland, A. -G., Bangham, J. A. & Coen, E. Growth dynamics underlying petal shape and asymmetry. Nature 422, 161–163 (2003).

    Article  Google Scholar 

  51. Golz, J. F., Keck, E. J. & Hudson, A. Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Curr. Biol. 12, 515–522 (2002).

    Article  CAS  Google Scholar 

  52. Waites, R. & Hudson, A. Phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121, 2143–2154 (1995).

    CAS  Google Scholar 

  53. Byrne, M. E. et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967–971 (2000).

    Article  CAS  Google Scholar 

  54. Nath, U., Crawford, B. C. W., Carpenter, R. & Coen, E. Genetic control of surface curvature. Science 299, 1404–1407 (2003).

    Article  CAS  Google Scholar 

  55. Heidmann, I., Efremova, N., Saedler, H. & Schwarz-Sommer, Z. A protocol for transformation and regeneration of Antirrhinum majus. Plant J. 13, 723–728 (1998).

    Article  Google Scholar 

  56. Schwarz-Sommer, Z. et al. A linkage map of an F2 hybrid population of Antirrhinum majus and A. molle. Genetics 163, 699–710 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lai, Z. et al. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol. Biol. 50, 29–42 (2002).

    Article  CAS  Google Scholar 

  58. Müller, I. et al. Syntaxin specificity in Arabidopsis cytokinesis. Nature Cell Biol. 5, 531–534 (2003).

    Article  Google Scholar 

  59. Sutton, D. A. A Revision of the Tribe Antirrhineae (British Museum Natural History, London, 1988).

    Google Scholar 

  60. Zwettler, D., Vieira, C. P. & Schlotterer, C. Polymorphic microsatellites in Antirrhinum (Scrophulariaceae), a genus with low levels of nuclear sequence variability. J. Hered. 93, 217–221 (2002).

    Article  CAS  Google Scholar 

  61. Hantke, S. S., Carpenter, R. & Coen, E. S. Expression of floricaula in single cell layers of periclinal chimeras activates downstream homeotic genes in all layers of floral meristems. Development 121, 27–35 (1995).

    CAS  PubMed  Google Scholar 

  62. Baur, E. Einführung in die Experimentelle Vererbungslehre (Gebr. Borntraeger, Berlin, 1914).

    Google Scholar 

  63. Paxton, J. Paxton's Magazine of Botany, and Register of Flowering Plants Vol. 5 55–56 (Periodical Publications, London, 1938).

    Google Scholar 

  64. Penzig, O. Pflanzen-Teratologie, Systematisch Geordnet Vol. 3 (Gebr. Borntraeger, Berlin, 1890).

    Google Scholar 

  65. Masters, M. T. Vegetable Teratology: An Account of the Principal Deviations from the Usual Construction of Plants (Ray Society, London,1869).

    Google Scholar 

  66. de Vries, H. Die Mutationstheorie 1 (von Veit u. Co, Leipzig, 1901).

    Google Scholar 

  67. de Vries, H. Die Mutationstheorie 2 (von Veit u. Co, Leipzig, 1903).

    Google Scholar 

  68. Schwarz-Sommer et al. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251–263 (1992).

    Article  CAS  Google Scholar 

  69. Waites et al. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 5, 779–789 (1998).

    Article  Google Scholar 

  70. Gutierrez-Cortines, M. E. & Davies, B. Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci. 5, 471–476 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the many colleagues from the Antirrhinum community who helped us during the preparation of this manuscript, and M. Wilkinson and K. Stüber for establishing and maintaining the Antirrhinum database. We gratefully acknowledge the maintenance and distribution of the classical Antirrhinum seed collection by the Institut für Kulturpflanzenforschung (IPK) Gatersleben. The work of A.H. and B.D. is supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC), and the research of Z.S.-S. and her group is supported in part by the Deutsche Forschungsgemeinschaft. Collaboration between Z.S.-S. and B.D. is supported by a British Council/German Academic Exchange Service (DAAD) Academic Research Collaboration (ARC) project grant.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

DragonDB

CIN

CYC

def-gli

DEF

DICH

DIV

FAR

FLO

GLO

HIRZ

NIV

OCT

pal-rec

PAL

PHAN

RAD

TAIR

AS1

SUP

FURTHER INFORMATION

Cathie Martin's web site

Enrico Coen and Rosemary Carpenter's web site

IPK-Gatersleben

John Innes Centre

Max Planck Institut für Züchtungsforschung

University of Leeds Centre for Plant Sciences

Glossary

ANTHOCYANIN

A soluble flavonoid pigment that is responsible for the blue-to-red colours in the flowers and other tissues of many angiosperm species.

AUTONOMOUS TRANSPOSON

Encodes a transposase protein that catalyses its excision and reintegration in the genome. An autonomous transposon can therefore direct its own transposition.

CHIASMA

The cytological manifestation of genetic exchange between chromosomes, which indicates that a crossover has occurred between homologous chromosomes.

COROLLA

A collective term for petals.

HOMEOTIC

A mutation that causes one member of a repetitive series to assume the identity of another member, for example, the transformation of sepals into petals.

MADS BOX

An acronym for the DNA-binding domain of a gene family that is derived from the initials of the founding members MCM1, AGAMOUS, DEFICIENS and SRF, in yeast, Arabidopsis, Antirrhinum and humans, respectively.

MERICLINAL CHIMAERA

A plant shoot in which only part of a cell layer is genetically distinct.

PELORIC

A term coined by Darwin to describe a mutant flower that has many planes of reflectional symmetry.

PERIANTH

A collective term for the sepals and petals.

PERICLINAL CHIMAERA

A shoot that is formed from an apical meristem in which at least one of the clonally distinct cell layers is genetically different.

STOMATA

Natural openings in the epidermis of the stem or leaf of a plant, which are surrounded by specialized guard cells and allow gaseous exchange with the air.

SYNTENY

The conservation of the relative order of genes in the chromosomes of different species.

TAC LIBRARY

A library consisting of large fragments of plant genomic DNA in a transformation-competent bacterial artificial chromosome (TAC) vector. This allows rapid transfer of genomic DNA to plant hosts through Agrobacterium-mediated transformation.

TRICHOMES

Epidermal hairs, which in Antirrhinum are multicellular.

WHORL

Organs of the same structure and function that are arranged in a concentric ring. In the flower, the outermost whorl (whorl one) develops first and contains the sepals, followed by the petals, stamens and carpels in whorls two, three and four, respectively.

ZYGOMORPHY

A zygomorphic flower has only one plane of reflectional symmetry and is often insect pollinated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz-Sommer, Z., Davies, B. & Hudson, A. An everlasting pioneer: the story of Antirrhinum research. Nat Rev Genet 4, 655–664 (2003). https://doi.org/10.1038/nrg1127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing