Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ancient horizontal gene transfer

Key Points

  • Ancient horizontal gene transfer (HGT) is the transfer of genes between the three domains of life: the Archaea, the Bacteria and the eukaryotes.

  • Ancient HGT seems to have been a main force in organism evolution because examples of gene transfers exist for many combinations of species of Archaea, Bacteria and eukaryotes.

  • The extent of HGT and the mechanisms surrounding it are still open to debate because there are no broadly occurring extant examples of inter-domain gene transfers.

  • To many researchers, ancient HGT has seriously challenged the concept of the universal tree of life.

  • Methods for detecting HGT include phylogenetic analysis, nucleotide composition analysis, analysis of gene distributions and homology analysis.

  • Phylogenetic analysis remains the best method for establishing the occurrence of ancient HGT, although there are caveats about the methodology and the limited availability of sequence data from evolutionarily pivotal groups.

  • Homology analysis of HGT, based on the comparisons of BLAST scores, can lead to overestimates or incorrect assignment of HGT events.

  • Phylogenetic analyses based on whole-genome data generally support the basic tenets of the universal tree of life.

  • The monophyly of the three domains of life is supported by proteins that show a closer evolutionary relationship between the Archaea and the eukaryotes.

  • Eukaryotic genes that are similar to their bacterial counterparts might have evolved as a consequence of endosymbiotic events that evidently led to the evolution of organelles, such as mitochondria and plastids. However, many genes involved in mitochondrial or chloroplast maintenance did not evolve from putative bacterial endosymbionts (α-proteobacteria and cyanobacteria, respectively).

  • New genomic data, in particular from protists that have secondarily lost their mitochondria, will show the extent of ancient HGT.

Abstract

The cornerstone of Charles Darwin's theory of evolution is the vertical inheritance of traits from parent to offspring across successive generations. However, molecular evolutionary biologists have shown that extensive horizontal (also known as lateral) gene transfer (HGT) can occur between distantly related species. Comparative sequence analyses of genomes indicates that the universal tree of life might be at risk because of pervasive, ancient HGT. Considerable debate now ensues about the role of HGT in genome evolution. At stake are a fundamental understanding of how life evolved and a deeper knowledge of the functioning of all genomes, including that of humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic tree for glutamine synthetase indicates HGT between the three domains.
Figure 2: Phylogeny of methionyl-tRNA synthetase.

Similar content being viewed by others

References

  1. Bushman, F. Lateral DNA Transfer (Cold Spring Harbor Laboratory Press, New York, 2002).

    Google Scholar 

  2. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990). Proposal for a new classification of all living organisms based on the three domains of life and the universal tree.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Doolittle, R. F., Feng, D. F., Anderson, K. L. & Alberro, M. R. A naturally occurring horizontal gene transfer from a eukaryote to prokaryote. J. Mol. Evol. 31, 383–388 (1990).

    CAS  PubMed  Google Scholar 

  4. Smith, M. W., Feng, D. -F. & Doolittle, R. F. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem. Sci. 17, 489–493 (1992).

    CAS  PubMed  Google Scholar 

  5. Golding, G. B. & Gupta, R. S. Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol. Evol. Biol. 12, 1–6 (1995).

    CAS  Google Scholar 

  6. Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote to eukaryotes transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999). An important view on the issues that surround the phylogenetic reconstruction of the universal tree.

    CAS  PubMed  Google Scholar 

  8. Felmingham, D. & Washington, J. Trends in the antimicrobial susceptibility of bacterial respiratory tract pathogens — findings of the Alexander Project 1992–1996. J. Chemother. 11, 5–21 (1999).

    CAS  PubMed  Google Scholar 

  9. Brown, J. R., Zhang, J. & Hodgson, J. E. A bacterial antibiotic resistance gene with eukaryotic origins. Curr. Biol. 8, R365–R367 (1998).

    CAS  PubMed  Google Scholar 

  10. Dröge, M., Pühler, A. & Selbitschka, W. Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J. Biotechnol. 64, 75–90 (1998). Reviews the studies on HGT and genetically modified (GM) organisms and finds little evidence for horizontal gene transfer from GM bacteria to eukaryotes in the field.

    PubMed  Google Scholar 

  11. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  12. Salzberg, S. L., White, O., Peterson, J. & Eisen, J. A. Microbial genes in the human genome: lateral transfer or gene loss? Science 292, 1903–1906 (2001).

    CAS  PubMed  Google Scholar 

  13. Roelofs, J. & Van Haastert, P. J. Genes lost during evolution. Nature 411, 1013–1014 (2001).

    CAS  PubMed  Google Scholar 

  14. Stanhope, M. J. et al. Phylogenetic analyses of genomic and EST sequences do not support horizontal gene transfers between bacteria and vertebrates. Nature 411, 940–944 (2001).

    CAS  PubMed  Google Scholar 

  15. Fox, G. E. et al. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl Acad. Sci. USA 74, 4537–4541 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 51, 221–271 (1977).

    Google Scholar 

  17. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    CAS  PubMed  Google Scholar 

  18. Gupta, R. S. & Golding, G. B. The origin of the eukaryotic cell. Trends Biochem. Sci. 21, 166–171 (1996).

    CAS  PubMed  Google Scholar 

  19. Feng, D. -F., Cho, G. & Doolittle, W. F. Determining divergence times with a protein clock: update and reevaluation. Proc. Natl Acad. Sci. USA 94, 13028–13033 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Roger, A. J. & Brown, J. R. A chimeric origin for eukaryotes re-examined. Trends Biochem. Sci. 21, 370–371 (1996).

    CAS  PubMed  Google Scholar 

  21. Pennisi, E. Genome data shake tree of life. Science 280, 672–674 (1998).

    CAS  PubMed  Google Scholar 

  22. Pennisi, E. Is it time to uproot the tree of life? Science 284, 1305–1307 (1999).

    CAS  PubMed  Google Scholar 

  23. Lawrence, J. G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl Acad. Sci. USA 95, 9413–9417 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Vallvé, S., Romeu, A. & Palau, J. Horizontal gene transfer in bacterial and archaea complete genomes. Genome Res. 10, 1719–1725 (2000).

    PubMed  PubMed Central  Google Scholar 

  25. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    CAS  PubMed  Google Scholar 

  26. Lawrence, J. G. & Ochman, H. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10, 1–3 (2002). A defence of the methods that detect HGT by using differences in nucleotide composition, in light of critiques by Ragan (references 23 and 24).

    CAS  PubMed  Google Scholar 

  27. Ragan, M. Reconciling the many faces of lateral gene transfer: response. Trends Microbiol. 10, 3 (2002).

    Google Scholar 

  28. Ragan, M. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett. 201, 187–191 (2001).

    CAS  PubMed  Google Scholar 

  29. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    CAS  PubMed  Google Scholar 

  31. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Koski, L. B. & Golding, B. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52, 540–542 (2001).

    CAS  PubMed  Google Scholar 

  33. Kyrpides, N. C. & Olsen, G. J. Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry? Trends Genet. 15, 298–299 (1999).

    CAS  PubMed  Google Scholar 

  34. Logsdon, J. M. Jr & Faguy, D. M. Evolutionary genomics: Thermotoga heats up lateral gene transfer. Curr. Biol. 9, R747–R751 (1999).

    CAS  PubMed  Google Scholar 

  35. Grauer, D. & Li, W. H. Fundamentals of Molecular Evolution 2nd edn (Sinauer Associates, Sunderland, Massachusetts, 2000). A good introductory volume to molecular evolution.

    Google Scholar 

  36. Huynen, M., Snel, B. & Bork, P. Lateral gene transfer, genome surveys and the phylogeny of prokaryotes. Technical comments. Science 286, 1443a (1999).

    Google Scholar 

  37. Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet. 21, 108–110 (1999).

    CAS  PubMed  Google Scholar 

  38. Fitz-Gibbon, S. T. & House, C. H. Whole genome-based phylogenetic analysis of free-living organisms. Nucleic Acids Res. 27, 4218–4222 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Doolittle, W. F. Lateral gene transfer, genome surveys and the phylogeny of prokaryotes. Technical comments. Science 286, 1443a (1999).

    Google Scholar 

  40. Xiong, J., Inoue, K. & Bauer, C. E. Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc. Natl Acad. Sci. USA 95, 14851–14856 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

    CAS  PubMed  Google Scholar 

  42. Hansmann, S. & Martin, W. Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int. J. Syst. Evol. Microbiol. 50, 1655–1663 (2000).

    CAS  PubMed  Google Scholar 

  43. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence datasets. Nature Genet. 28, 281–285 (2001).

    CAS  PubMed  Google Scholar 

  44. Koonin, E. V., Aravind, L. & Kondrashov, A. S. The impact of comparative genomics on our understanding of evolution. Cell 101, 573–576 (2000).

    CAS  PubMed  Google Scholar 

  45. Gribaldo, S. et al. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol. 181, 434–443 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zambryski, P., Tempe, J. & Schell, J. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids. Cell 56, 193–201 (1989).

    CAS  PubMed  Google Scholar 

  47. Kondo, N., Nikoh, N., Ijichi, N., Shimada, M. & Fukatsu, T. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc. Natl Acad. Sci. USA. 99, 14280–14285 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tourmen, Y. et al. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80, 71–77 (2002).

    CAS  PubMed  Google Scholar 

  49. Courvalin, P., Goussard, S. & Grillot-Courvalin, C. Gene transfer from bacteria to mammalian cells. C. R. Acad. Sci. Paris Life Sci. 318, 1207–1212 (1995).

    CAS  Google Scholar 

  50. Kunik, T. et al. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl Acad. Sci. USA 98, 1871–1876 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kurland, C. G. Something for everyone: horizontal gene transfer in evolution. EMBO Rep. 1, 92–95 (2000). Argues that HGT is used too frequently to explain evolutionary patterns.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998). Describes the hypothesis that eukaryotes evolved from a symbiosis of an archaeon and a hydrogen-producing bacterium.

    CAS  PubMed  Google Scholar 

  53. Moreira, D. & López-García, P. Symbiosis between methanogenic Archaea and δ-Proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

    CAS  PubMed  Google Scholar 

  54. Horiike, T., Hamada, K., Kanaya, S. & Shinozawa, T. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol. 3, 210–214 (2002).

    Google Scholar 

  55. Poole, A. & Penny, D. Does endosymbiosis explain the origin of the nucleus? Nature Cell Biol. 3, E173 (2001).

    CAS  PubMed  Google Scholar 

  56. Rotte, C. & Martin, W. Does endosymbiosis explain the origin of the nucleus? Nature Cell Biol. 3, E173 (2001).

    CAS  PubMed  Google Scholar 

  57. von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001).

    CAS  PubMed  Google Scholar 

  58. Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).

    CAS  PubMed  Google Scholar 

  59. Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl Acad. Sci. USA 99, 1420–1425 (2002). Identifies a core set of proteins that are specific to eukaryotes.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Doolittle, W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14, 307–311 (1998). Proposes an influential explanation of how eukaryotic genomes would accumulate bacterial genes through interdomain HGT.

    CAS  PubMed  Google Scholar 

  61. Woese, C. R. On the evolution of cells. Proc. Natl Acad. Sci. USA 99, 8742–8747 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Forterre, P. & Philippe, H. Where is the root of the universal tree of life? BioEssays 21, 871–879 (1999).

    CAS  PubMed  Google Scholar 

  63. Gupta, R. H. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435–1491 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Olsen, G. J. & Woese, C. R. Archaeal genomics — an overview. Cell 89, 991–994 (1997).

    CAS  PubMed  Google Scholar 

  65. Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lathe, W. C., Snel, B. & Bork, P. Gene context conservation of a higher order than operons. Trends Biochem. Sci. 25, 474–479 (2000).

    CAS  PubMed  Google Scholar 

  68. Brochier, C., Philippe, H. & Moreira, D. The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet. 16, 529–533 (2000).

    CAS  PubMed  Google Scholar 

  69. Brinkman, H. & Philippe, H. Archaea sister group of bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16, 817–825 (1999).

    Google Scholar 

  70. Horner, D. S., Heil, B., Happe, T. & Embley, T. M. Iron hydrogenases — ancient enzymes in modern eukaryotes. Trends Biochem. Sci. 27, 148–153 (2002).

    CAS  PubMed  Google Scholar 

  71. Horner, D. S., Hirt, R. P. & Embley, T. M. A single eubacterial origin of eukaryotic pyruvate:ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 16, 1280–1291 (1999).

    CAS  PubMed  Google Scholar 

  72. Chihade, J., Brown, J. R., Schimmel, P. & Ribas de Pouplana, L. Origin of mitochondria in relation to evolutionary history of eukaryotic alanyl-tRNA synthetase. Proc. Natl Acad. Sci. USA 97, 12153–12157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown, J. R., Masuchi, Y., Robb, F. T. & Doolittle, W. F. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J. Mol. Evol. 38, 566–576 (1994).

    CAS  PubMed  Google Scholar 

  74. Benachenhou-Lahfa, N., Forterre, P. & Labedan, B. Evolution of glutamate dehydrogenase genes: evidence for paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J. Mol. Evol. 36, 335–346 (1993).

    CAS  PubMed  Google Scholar 

  75. Forterre, P., Bouthier de la Tour, C., Philippe, H. & Duguet, M. Reverse gyrase from thermophiles: probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet. 16, 152–154 (2000).

    CAS  PubMed  Google Scholar 

  76. Faguy, D. M. & Doolittle, W. F. Horizontal transfer of catalase-peroxidase genes between Archaea and pathogenic bacteria. Trends Genet. 16, 196–197 (2000).

    CAS  PubMed  Google Scholar 

  77. Koretke, K. K., Lupas, A. N., Warren, P. V., Rosenberg, M. & Brown, J. R. Evolution of two-component signal transduction. Mol. Biol. Evol. 17, 1956–1970 (2000).

    CAS  PubMed  Google Scholar 

  78. Lamour, V. et al. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case for horizontal gene transfer. Proc. Natl Acad. Sci. USA 91, 8670–8674 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Brown, J. R. & Doolittle, W. F. Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J. Mol. Evol. 49, 485–495 (1999).

    CAS  PubMed  Google Scholar 

  80. Margulis, L. Origin of Eukaryotic Cells (Yale University Press, New Haven, Connecticut, 1970).

    Google Scholar 

  81. Kurland, C. & Andersson, S. G. E. Origin and evolution of the mitochondrial proteome. Mol. Biol. Rev. 64, 786–820 (2000). A detailed perspective on proteobacterial genomes and the evolution of mitochondria.

    CAS  Google Scholar 

  82. Cavalier-Smith, T. Kingdom protozoa and its 18 phyla. Microbiol. Rev. 57, 953–994 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Clark, C. G. & Roger, A. J. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc. Natl Acad. Sci. USA 92, 6518–6521 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Germot, A., Philippe, H. & Le Guyader, H. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc. Natl Acad. Sci. USA 93, 14614–14617 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Henze, K. A., Badr, A., Wettern, M., Cerff, R. & Martin, W. A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proc. Natl Acad. Sci. USA 92, 9122–9126 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Keeling, P. J. & Doolittle, W. F. Evidence that eukaryotic triosephosphate isomerase is of α-proteobacterial origin. Proc. Natl Acad. Sci. USA 94, 1270–1275 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Keeling, P. J. & McFadden, G. I. Origins of microsporidia. Trends Microbiol. 6, 19–23 (1998).

    CAS  PubMed  Google Scholar 

  88. Roger, A. J., Clark, C. G. & Doolittle, W. F. A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc. Natl Acad. Sci. USA 93, 14618–14622 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. van der Giezen, M. et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 21, 572–579 (2002).

    CAS  PubMed  Google Scholar 

  90. Tielens, A. G. M., Rotte, C., van Hellemond, J. J. & Martin, W. Mitochondria as we don't know them. Trends Biochem. Sci. 27, 564–572 (2002). Describes the broad range of mitochondrial metabolic diversity.

    CAS  PubMed  Google Scholar 

  91. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    CAS  PubMed  Google Scholar 

  92. Karlberg, O., Canbäck, B., Kurland, C. G. & Andersson, S. G. E. The dual origin of the yeast mitochondrial proteome. Yeast Comp. Funct. Genomics 17, 170–187 (2000). An evolutionary analysis of the archaeal and bacterial contributions to the mitochondrial proteome.

    CAS  Google Scholar 

  93. Thorsness, P. E. & Fox, T. D. Escape of DNA from mitochondria to nucleus in Saccharomyces cerevisiae. Nature 346, 376–379 (1990).

    CAS  PubMed  Google Scholar 

  94. Thorsness, P. E. & Fox, T. D. Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics 134, 21–28 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rujan, T. & Martin, W. How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet. 17, 113–119 (2001).

    CAS  PubMed  Google Scholar 

  96. Martin, W. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 12246–12251 (2002). An assessment of the potential contribution of the plastid symbiont to the plant nuclear genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Palenik, B. The genomics of symbiosis: host keep the baby and the bath water. Proc. Natl Acad. Sci. USA 99, 11996–11997 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Brinkman, F. S. L. et al. Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, Cyanobacteria, and the chloroplast. Genome Res. 12, 1159–1167 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Martin, W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays 21, 99–104 (1999). Discusses the possible impacts on genome evolution of mixing bacterial lineages.

    CAS  PubMed  Google Scholar 

  100. Berg, O. G. & Kurland, C. G. Why mitochondrial genes are most often found in nuclei. Mol. Biol. Evol. 17, 951–961 (2000).

    CAS  PubMed  Google Scholar 

  101. Blanchard, J. L. & Lynch, M. Organellar genes: why do they end up in the nucleus? Trends Genet. 16, 315–320 (2000).

    CAS  PubMed  Google Scholar 

  102. Canback, B., Andersson, S. G. E. & Kurland, C. G. The global phylogeny of glycolytic enzymes. Proc. Natl Acad. Sci. USA 99, 6097–6102 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Brown, J. R. & Doolittle, W. F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl Acad. Sci. USA 92, 2441–2445 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hashimoto, T., Sánchez, L. B., Shirakura, T., Müller, M. & Hasegawa, M. Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc. Natl Acad. Sci. USA 95, 6860–6865 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Deppenmeier, U. et al. The genome of Methanosacrina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4, 453–461 (2002).

    CAS  PubMed  Google Scholar 

  106. Wren, B. W. Microbial genome analysis: insight into virulence, host adaptation and evolution. Nature Rev. Genet. 1, 30–39 (2000).

    CAS  PubMed  Google Scholar 

  107. Huang, P. & Oliff, A. Signaling pathways in apoptosis as potential targets for cancer therapy. Trends Cell Biol. 11, 343–348 (2001).

    CAS  PubMed  Google Scholar 

  108. Koonin, E. V. & Aravind, L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ. 9, 394–404 (2002).

    CAS  PubMed  Google Scholar 

  109. Dehal, P. et. al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).

    CAS  PubMed  Google Scholar 

  110. Graham, D. E., Overbeek, R., Olsen, G. J. & Woese, C. R. An archaeal genomic signature. Proc. Natl Acad. Sci. USA 97, 3304–3308 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Iwabe, N., Kuma, K. -I., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of Archaea, Bacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Olsen, G. J., Woses, C. R. & Overbeek, R. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176, 1–6 (1994). Contains a comprehensive ribosomal RNA phylogeny of the Bacteria and Archaea.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hilario, E. & Gogarten, J. P. Horizontal transfer of ATPase genes — the tree of life becomes the net of life. BioSystems 31, 111–119 (1993).

    CAS  PubMed  Google Scholar 

  115. Woese, C. R., Olsen, G. J., Ibba, M. & Söll, D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202–236 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lopez, P., Forterre, P. & Philippe, H. The root of the tree of life in the light of the covarion model. J. Mol. Evol. 49, 496–508 (1999).

    CAS  PubMed  Google Scholar 

  117. Baldauf, S. L., Palmer, J. D. & Doolittle, W. F. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc. Natl Acad. Sci. USA 93, 7749–7754 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wolf, Y. I., Aravind, L., Grishin, N. V. & Koonin, E. V. Evolution of aminoacyl-tRNA synthetases — analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9, 689–710 (1999).

    CAS  PubMed  Google Scholar 

  119. Teichmann, S. A. & Mitchison, G. Is there a phylogenetic signal in prokaryote proteins? J. Mol. Evol. 49, 98–107 (1999).

    CAS  PubMed  Google Scholar 

  120. Brown, J. R. Genomic and phylogenetic perspectives on the evolution of prokaryotes. Syst. Biol. 50, 497–512 (2001).

    CAS  PubMed  Google Scholar 

  121. Boucher, Y. & Doolittle, W. F. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol. Microbiol. 37, 703–716 (2000).

    CAS  PubMed  Google Scholar 

  122. Aravind, L., Tatusov, R. L., Wolf, Y. I., Walker, D. R. & Koonin, E. V. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14, 442–444 (1998).

    CAS  PubMed  Google Scholar 

  123. Eisen, J. A. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev. 10, 606–611 (2000).

    CAS  PubMed  Google Scholar 

  124. Martin, W. Is something wrong with the tree of life? Bioessays 18, 523–527 (1996).

    CAS  Google Scholar 

  125. Tiboni, O., Cammarano, P. & Sanangelantoni, A. M. Cloning and sequencing the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J. Bacteriol. 175, 2961–2969 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Ver. 4 (Sinauer Associates, Sunderland, Massachusetts, 1999).

  127. Felsenstein, J. PHYLIP (Phylogeny Inference Package) Ver. 3, 57c. Distributed by the author: http://evolution.genetics.washington.edu/phylip.html (Department of Genetics, University of Washington, Seattle, 1993).

  128. Page, R. D. M. TREEVIEW: an application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12, 357–358 (1996).

    CAS  PubMed  Google Scholar 

  129. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    CAS  PubMed  Google Scholar 

  130. Carlton, J. M. et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419, 512–519 (2002).

    CAS  PubMed  Google Scholar 

  131. Baldauf, S. L. & Doolittle, W. F. Origin and evolution of the slime molds (Mycetozoa). Proc. Natl Acad. Sci. USA 94, 12007–12012 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The support of GlaxoSmithKline R & D, Genetics Research, Bioinformatics Division is gratefully acknowledged. I thank two anonymous reviewers for their comments on this manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

The European Ribosomal RNA Database

The Institute for Genome Research

Mitochondria Genome Project (MITOP)

National Center for Biotechnology Information

Phylogeny Programmes, University of Washington

PlasmoDB — The Plasmodium Genome Resource

The Tree of Life

Treeview

The Wellcome Trust Sanger Institute

Glossary

UNIVERSAL TREE OF LIFE

The relationships of all living species based on the phylogeny of ribosomal RNA molecules. The universal tree topology shows the three domains of life to be separate and unique (monophyletic). Independent protein phylogenies show that the Archaea and the eukaryotes are sister groups, so the tree must be rooted in the Bacteria.

ROOTING

Orientating a phylogenetic tree using an outgroup taxon to determine the order of evolution in the group of taxa of interest.

MONOPHYLY

Monophyletic taxa are derived from a single common ancestor.

ORTHOLOGUE

A homologous gene that is derived from a speciation event or by vertical descent.

PARAPHYLY

Paraphyletic taxa are derived from a single common ancestor but the group does not include all of the descendants.

POLYPHYLY

Polyphyletic taxa are descended from different ancestors.

PROTEOBACTERIA

A group of Gram-negative bacteria, often called purple bacteria, that includes Escherichia coli. They are subdivided into α-, β-, γ-, δ- and ε-proteobacteria. The α-proteobacteria are believed to be the endosymbiont progenitors of mitochondria.

OUTGROUP

A species or sequence that is known to diverge earlier than the other species or sequences being analysed.

DENDOGRAMS

A branching tree-like diagram.

16S SSU RIBOSOMAL RNA

Ribosomal RNA (rRNA) molecules of discrete sizes that, along with ribosomal proteins, comprise the ribosomes of prokaryotes and eukaryotes. Small subunit (SSU) 16S rRNA is widely used as a phylogenetic marker.

PARALOGUES

Homologous genes that have evolved from a gene duplication.

GRAM-POSITIVE BACTERIA

A group of bacteria that take up Gram stains during histological preparation for identification. Bacillus subtilis, as well as Streptococci and Staphylococci pathogens, belong to this group.

PROTISTS

Single-celled eukaryotic organisms with, or without, organelles.

ARCHEZOA

A group of protists that lack mitochondria and, therefore, were previously thought to have evolved before endosymbiosis. However, it is now believed that the Archezoa secondarily lost their mitochondria.

CONVERGENCE

The independent evolution of similar features (such as genes) in evolutionarily distinct lineages.

AMELIORATE

The process by which, over successive generations, the nucleotide composition of a horizontally transferred DNA segment becomes identical to that of the host genome.

70 kDa HEAT-SHOCK PROTEIN

(HSP70). A member of a large set of proteins that are expressed in response to several physical and chemical stresses.

COMPETENCY

The ability of prokaryotes to stably incorporate exogenous DNA fragments from the environment into their genomes.

TUMOUR-INDUCING (TI) PLASMID

The plasmid responsible for transferring DNA from Agrobacterium to plant cells. This is the only known natural example of inter-domain DNA transfer.

ENDOSYMBIONT

An intracellular organism that contributes to the survival of the host cell and depends on the host for its own persistence.

PSEUDOGENE

A DNA sequence that was derived originally from a functional protein-coding gene that has lost its function, owing to the presence of one, or more, inactivating mutations.

FIXATION

The accumulation of a gene or an allele to a frequency of 100% in a population.

NEIGHBOUR-JOINING METHOD

A distance-based molecular phylogenetic method that involves the sequential addition of taxa and the minimization of branch lengths, but does not assume a molecular clock.

MAXIMUM PARSIMONY

A mathematical method for determining the evolutionary relationship between proteins, which takes account of the minimum number of mutations that are required to effect the transition from one member of the family to another.

RIBOSOMAL PROTEIN S14

A protein associated with the small (30S) ribosomal subunit that has a possible role in ribosome assembly and is associated with the peptidyl transferase centre.

PYRUVATE:FERREDOXIN OXIDOREDUCTASE GENES

An iron sulphur protein that functions in central metabolism by decarboxylating pyruvate to acetyl-CoA in anaerobic eukeryotes and bacteria.

GLUTAMINE SYNTHETASE

An essential enzyme for ammonia assimilation and glutamine biosynthesis.

REVERSE GYRASE

An enzyme that is responsible for generating positive DNA supercoils in the chromosomes of thermophilic Archaea and Bacteria. It has resulted from the fusion of two proteins — a partial helicase and a type I DNA topoisomerase.

CATALASE-PEROXIDASE

A family of enzymes, found in the Bacteria and the Archaea, that are involved in the removal of cellular peroxide molecules.

TWO-COMPONENT SIGNAL-TRANSDUCTION SYSTEMS

Two interacting proteins — a histidine kinase with an extracellular domain and an intracellular response regulator — that form the central signalling pathway in bacteria.

GLUTAMINYL-tRNA SYNTHETASE

A member of the class I aminoacyl-tRNA synthetase family that is responsible for attaching the amino acid glutamine to its cognate tRNA.

PARABASLIDS

Single-celled eukaryotes that usually live as parasites or symbionts in animals. They lack mitochondria but have hydrogen-producing organelles called hydrogenosomes. Trichonomas vaginalis is a member species.

GENETIC DRIFT

Changes in gene frequencies in a population due to chance alone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J. Ancient horizontal gene transfer. Nat Rev Genet 4, 121–132 (2003). https://doi.org/10.1038/nrg1000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing