Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene silencing in mammals by small interfering RNAs

Key Points

  • A new method for elucidating gene function in mammals was discovered in 2000; it uses small double-stranded RNAs to interfere with gene expression.

  • An evolutionarily conserved pathway uses these small interfering RNAs (siRNAs) to degrade mRNAs before translation.

  • siRNAs are easily synthesized and used to silence genes in cell culture. Investigators are seizing the opportunity to use siRNA technology to silence their favourite genes. Recently, the successful use of siRNA in whole mice was reported.

  • It has recently been shown that siRNAs can be effective antiviral agents in cell culture, raising hopes that siRNAs will represent the next generation of antiviral therapeutics.

  • siRNAs can be expressed from DNA constructs and silencing cell lines can be made.

Abstract

Among the 3 billion base pairs of the human genome, there are 30,000–40,000 protein-coding genes, but the function of at least half of them remains unknown. A new tool — short interfering RNAs (siRNAs) — has now been developed for systematically deciphering the functions and interactions of these thousands of genes. siRNAs are an intermediate of RNA interference, the process by which double-stranded RNA silences homologous genes. Although the use of siRNAs to silence genes in vertebrate cells was only reported a year ago, the emerging literature indicates that most vertebrate genes can be studied with this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Short interfering RNAs are at the heart of RNA interference.
Figure 2: Small RNAs in development.
Figure 3: MicroRNAs and short interfering RNAs might use the same RNA-processing complex to direct silencing.
Figure 4: Long cytoplasmic double-stranded RNA activates many cellular pathways.
Figure 5: Two new approaches for stable RNA interference silencing in mammalian cells.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).The first paper to describe RNAi. Soon after, RNAi became a standard means by which to analyse gene function in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  2. Vaucheret, H., Beclin, C. & Fagard, M. Post-transcriptional gene silencing in plants. J. Cell Sci. 114, 3083–3091 (2001).

    CAS  PubMed  Google Scholar 

  3. Baulcombe, D. RNA silencing. Curr. Biol. 12, R82–R84 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).The authors present the first evidence for the key mediator of RNAi: the small interfering RNAs, now known as siRNAs. After this report, the presence of siRNAs in silenced tissue was considered to be the hallmark of active RNAi processes.

    Article  CAS  PubMed  Google Scholar 

  6. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).This paper helped to define the mechanism for RNAi. The authors showed that siRNAs can be produced from long dsRNAs, and that the siRNAs direct targeted mRNA cleavage.

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).The authors describe the enzyme for siRNA production, the RNase III enzyme, Dicer.

    Article  CAS  PubMed  Google Scholar 

  8. Parrish, S., Fleenor, J., Xu, S., Mello, C. & Fire, A. Functional anatomy of a dsRNA trigger. Differential requirement for the two trigger strands in RNA interference. Mol. Cell 6, 1077–1087 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, D., Lu, H. & Erickson, J. W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol. 10, 1191–1200 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Donze, O. & Picard, D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res. 30, E46 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, D. et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 99, 9942–9947 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).The identification of the first miRNA.

    Article  CAS  PubMed  Google Scholar 

  18. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).The identification of let-7 as a second miRNA in the heterochronic gene pathway indicated that many more miRNAs might be found.

    Article  CAS  PubMed  Google Scholar 

  19. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637–646 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Rougvie, A. E. Control of developmental timing in animals. Nature Rev. Genet. 2, 690–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Sharp, P. A. RNA interference—2001. Genes Dev. 15, 485–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Moss, E. G. Non-coding RNAs: lightning strikes twice. Curr. Biol. 10, R436–R439 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).This work provided a link between RNAi and the heterochronic gene pathway by showing that siRNAs and stRNAs are produced by the same molecules.

    Article  CAS  PubMed  Google Scholar 

  27. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bass, B. L. Double-stranded RNA as a template for gene silencing. Cell 101, 235–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in C. elegans. Science 293, 2269–2271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams, R. W. & Rubin, G. M. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl Acad. Sci. USA 99, 6889–6894 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morel, J. B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Chakravarty, I., Bagchi, M. K., Roy, R., Banerjee, A. C. & Gupta, N. K. Protein synthesis in rabbit reticulocytes. Purification and properties of an Mr 80,000 polypeptide (Co-eIF-2A80) with Co-eIF-2A activity. J. Biol. Chem. 260, 6945–6949 (1985).

    CAS  PubMed  Google Scholar 

  35. Dasgupta, A. et al. Protein synthesis in rabbit reticulocytes. XXI. Purification and properties of a protein factor (Co-EIF-1) which stimulates Met-tRNAf binding to EIF-1. J. Biol. Chem. 253, 6054–6059 (1978).

    CAS  PubMed  Google Scholar 

  36. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).Together with references 38 and 39 , these papers describe the cornucopia of miRNAs.

    Article  CAS  PubMed  Google Scholar 

  38. Lau, N. C., Lim le, E. P., Weinstein, E. G. & Bartel da, V. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Llave, C., Kasschau, K. D., Maggie, A. R. & Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).The authors predict that miRNAs in plants might regulate genes in a manner similar to that by siRNAs. Several of their predicted targets map to open reading frames.

    Article  CAS  PubMed  Google Scholar 

  44. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischer, U., Liu, Q. & Dreyfuss, G. The SMN–SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90, 1023–1029 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Jones, K. W. et al. Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J. Biol. Chem. 276, 38645–38651 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Meister, G., Buhler, D., Pillai, R., Lottspeich, F. & Fischer, U. A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nature Cell Biol. 3, 945–949 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Mourelatos, Z., Abel, L., Yong, J., Kataoka, N. & Dreyfuss, G. SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J. 20, 5443–5452 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pellizzoni, L., Baccon, J., Charroux, B. & Dreyfuss, G. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr. Biol. 11, 1079–1088 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Pellizzoni, L., Charroux, B., Rappsilber, J., Mann, M. & Dreyfuss, G. A functional interaction between the survival motor neuron complex and RNA polymerase II. J. Cell Biol. 152, 75–85 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 1 August 2002; [epub ahead of print].

  52. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).The first description of siRNA use in mammalian cell cultures. A wave of siRNA use in mammalian cells soon followed this key publication.

    Article  CAS  PubMed  Google Scholar 

  53. McManus, M. T., Haines, B. B., Chen, J. & Sharp, P. A. siRNA-mediated gene silencing in T-cells. J. Immunol. (in the press).

  54. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jacque, J. M., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).

    CAS  PubMed  Google Scholar 

  61. Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Caplen, N. J., Fleenor, J., Fire, A. & Morgan, R. A. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 30, 1757–1766 (2002). http://www.mpibpc.gusdg.de/abteilungen/100/105/siRNA.html

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tuschl, T. The siRNA User Guide 2001. www.mpibpc.gwdg.de/abteilungen/100/105/sirna.html

    Google Scholar 

  66. Novina, C. D. et al. siRNA-directed inhibition of HIV-1 infection. Nature Med. 8, 681–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–505 (2002).

    Article  CAS  Google Scholar 

  68. Scherr, M. et al. Detection of antisense and ribozyme accessible sites on native mRNAs: application to NCOA3 mRNA. Mol. Ther. 4, 454–460 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Scherr, M. & Rossi, J. J. Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts. Nucleic Acids Res. 26, 5079–5085 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Waterhouse, P. M., Wang, M. B. & Lough, T. Gene silencing as an adaptive defence against viruses. Nature 411, 834–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Bitko, V. & Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild-type negative-strand RNA viruses. BMC Microbiol. 1, 34 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gitlin, L., Karelsky, S. & Andino, R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Hu, W. H., Myers, C. P., Kilver, J. M., Pfaff, S. L. & Bushman, F. D. Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol. 12, 1301 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Coburn, G. A. & Cullen, B. R. Potent and specific inhibition of HIV-1 replication using RNA interference. J. Virol. 76, 9225–9231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genet. 32, 107–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Li, H., Xiang, L. W. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1323 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, K. & Nicholson, A. W. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc. Natl Acad. Sci. USA 94, 13437–13441 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, H. et al. A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III. EMBO J. 20, 7240–7249 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chanfreau, G., Buckle, M. & Jacquier, A. Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III. Proc. Natl Acad. Sci. USA 97, 3142–3147 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lai, E. C., Burks, C. & Posakony, J. W. The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development 125, 4077–4088 (1998).

    CAS  PubMed  Google Scholar 

  82. Lai, E. C. & Posakony, J. W. The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split complex gene expression. Development 124, 4847–4856 (1997).

    CAS  PubMed  Google Scholar 

  83. Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898 (2000).

    Article  CAS  Google Scholar 

  84. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Chuang, C. F. & Meyerowitz, E. M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 97, 4985–4990 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith, N. A. et al. Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl Acad. Sci. USA 99, 1443–1448 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Svoboda, P., Stein, P. & Schultz, R. M. RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun. 287, 1099–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Paul, C. P., Good, P. D., Winer, I. & Engelke, D. R. Effective expression of small interfering RNA in human cells. Nature Biotechnol. 20, 505–508 (2002).

    Article  CAS  Google Scholar 

  91. Miyagishi, M. & Taira, K. U6 promoter driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol. 20, 497–500 (2002).

    Article  CAS  Google Scholar 

  92. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA 99, 5515–5520 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1–20 (2002).

    Article  Google Scholar 

  94. McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J. & Sharp, P. A. Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Pysh, L. D., Wysocka-Diller, J. W., Camilleri, C., Bouchez, D. & Benfey, P. N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Gil, J. & Esteban, M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Kumar, M. & Carmichael, G. G. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1415–1434 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tabara et al. The rde-1 gene, RNA interface and transposon silencing in C.elegans. Cell 99, 123–132 (2002).

    Article  Google Scholar 

  100. Ohta, T. et al. Characterization of CEP135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J. Cell Biol. 156, 87–99 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhihong, C., Indjeian, V. B., McManus, M. T., Wang, L. & Dynlacht, B. D. A novel, cell cycle-dependent centriolar CDK substrate regulates centrosome duplication in human cells. Dev. Cell 2, 1–16 (2002).

    Article  Google Scholar 

  102. Moskalenko, S. et al. The exocyst is a Ral effector complex. Nature Cell Biol. 4, 66–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Kisielow, M., Kleiner, S., Nagasawa, M., Faisal, A. & Nagamine, Y. Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem. J. 363, 1–5 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stucke, V. M., Sillje, H. H., Arnaud, L. & Nigg, E. A. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723–1732 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, F., Yan, W., Pan, J., Morser, J. & Wu, Q. Processing of pro-atrial natriuretic peptide by corin in cardiac myocytes. J. Biol. Chem. 277, 16900–16905 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Bai, X. et al. Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the beta 1,3-galactosyltransferase family (beta 3GalT6). J. Biol. Chem. 276, 48189–48195 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Mailand, N. et al. Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. Nature Cell Biol.4, 318–322 (2002).

  109. Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Zanmore, B. Cullen, A. Pasquirelli and the Sharp lab for critical reading of the manuscript. Our apologies to those whose work which could not be cited due to space constraints. NCI grant to P.A.S. and partially by NCI Cancer centre support. M.T.M is a fellow of the Cancer Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. McManus.

Related links

Related links

DATABASES

LocusLink

Dicer

EIF2C/Argonaute

EIF2C2

GEMIN3

GEMIN4

lamin

NUMA1

PKR

Scarecrow

SMN complex

TF

TP53

vimentin

The <i>Arabidopsis</i> Information Resource

ATHB-8

PHB

WormBase

ALG-1

ALG-2

lin-4

let-7

lin-14

lin-28

lin-41

Glossary

FORWARD GENETICS

A genetic analysis that proceeds from phenotype to genotype by positional cloning or candidate-gene analysis.

REVERSE GENETICS

A genetic analysis that proceeds from genotype to phenotype by gene-manipulation techniques, such as homologous recombination in embryonic stem cells.

RIBOZYME

An RNA molecule with catalytic activity.

POLYSOME

A functional unit of protein synthesis that consists of several ribosomes that are attached along the length of a single molecule of RNA.

DYAD SYMMETRY

A sequence is said to be dyad symmetric (or pallindromic) when it is symmetric about a central axis.

PRIMARY CELL

A cell that is taken from a tissue source and whose progeny are grown in culture, before subdivision and transfer to a subculture.

CONFLUENCE

The degree at which a monolayer of tissue culture cells occupies the growth dish.

DEAD BOX

A highly conserved motif in a family of putative RNA helicases; it takes its name from the single letter code for its amino-acid sequence.

RESPIRATORY SYNCYTIAL VIRUS

A virus that is responsible for many respiratory tract infections, including the common cold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McManus, M., Sharp, P. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3, 737–747 (2002). https://doi.org/10.1038/nrg908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing