Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of morphogen gradients

Key Points

  • A morphogen is a type of signalling molecule that imparts pattern to a developmental field by acting directly on cells in a concentration-dependent manner.

  • The best-studied model system for understanding morphogen function is the Drosophila wing, where Decapentaplegic (Dpp), Wingless (Wg) and Hedgehog (Hh) proteins have been shown to act as morphogens.

  • Several models have been proposed for generating a morphogen gradient; diffusion through the extracellular space is important in trafficking of the Wg morphogen, and planar transcytosis (transcellular transport) has an important function in Dpp trafficking.

  • The activity gradient of Dpp can be visualized in situ by using an antibody that specifically recognizes phosphorylated Mothers against Dpp (Mad), a cytoplasmic signal transducer of Dpp signalling.

  • Receptor levels can regulate the distribution of receptor ligands and their activity gradients. This has been observed for the Dpp and Hh morphogens.

  • Negative regulators are involved in shaping the activity gradient at several levels.

  • Many of the molecules and molecular mechanisms that have been identified in Drosophila might also be involved in the development of vertebrate systems, although this can only be confirmed by using more rigorous genetic analysis.

Abstract

The organization of cells and tissues is controlled by the action of 'form-giving' signalling molecules, or morphogens, which pattern a developmental field in a concentration-dependent manner. As the fate of each cell in the field depends on the level of the morphogen signal, the concentration gradient of the morphogen prefigures the pattern of development. In recent years, molecular genetic studies in Drosophila melanogaster have allowed tremendous progress in understanding how morphogen gradients are formed and maintained, and the mechanism by which receiving cells respond to the gradient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterning a developmental field by long-range signalling.
Figure 2: Inductive signals organize neuronal cell identity along the dorsoventral axis of the neural tube.
Figure 3: Inductive activities during the development of the Drosophila wing.
Figure 4: Inductive activities of Hedgehog and Decapentaplegic.
Figure 5: The Decapentaplegic signalling pathway.
Figure 6: Ligand and activity gradient of the Decapentaplegic morphogen.
Figure 7: Models for movement of the morphogen molecule.
Figure 8: Evidence for planar transcytosis of Decapentaplegic in the wing imaginal disc.

Similar content being viewed by others

References

  1. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    CAS  PubMed  Google Scholar 

  2. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B237, 37–72 (1952).

    Google Scholar 

  3. Gurdon, J. B., Harger, P., Mitchell, A. & Lemaire, P. Activin signalling and response to a morphogen gradient. Nature 371, 487–492 (1994).

    CAS  PubMed  Google Scholar 

  4. Jones, C. M., Armes, N. & Smith, J. C. Signalling by TGF-β family members: short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr. Biol. 6, 1468–1475 (1996).

    CAS  PubMed  Google Scholar 

  5. Dosch, R., Gawantka, V., Delius, H., Blumenstock, C. & Niehrs, C. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124, 2325–2334 (1997).

    CAS  PubMed  Google Scholar 

  6. Ericson, J., Briscoe, J., Rashbass, P., Van Heyningen, V. & Jessell, T. M. Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb. Symp. Quant. Biol. 62, 451–466 (1997).

    CAS  PubMed  Google Scholar 

  7. Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 (1999).

    CAS  PubMed  Google Scholar 

  8. Lee, K. J., Dietrich, P. & Jessell, T. M. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403, 734–740 (2000).

    CAS  PubMed  Google Scholar 

  9. Irving, C. & Mason, I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127, 177–186 (2000).

    CAS  PubMed  Google Scholar 

  10. Crossley, P. H., Martinez, S. & Martin, G. R. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68 (1996).

    CAS  PubMed  Google Scholar 

  11. Martinez, S., Crossley, P. H., Cobos, I., Rubenstein, J. L. & Martin, G. R. FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126, 1189–1200 (1999).

    CAS  PubMed  Google Scholar 

  12. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalisation of the wing disk of Drosophila. Nature New Biol. 245, 251–253 (1973).

    CAS  PubMed  Google Scholar 

  13. Garcia-Bellido, A., Ripoll, P. & Morata, G. Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila. Dev. Biol. 48, 132–147 (1976).

    CAS  PubMed  Google Scholar 

  14. McNeill, H. Sticking together and sorting things out: adhesion as a force in development. Nature Rev. Genet. 1, 100–108 (2000).

    CAS  PubMed  Google Scholar 

  15. Simmonds, A. J., Brook, W. J., Cohen, S. M. & Bell, J. B. Distinguishable functions for engrailed and invected in anterior–posterior patterning in the Drosophila wing. Nature 376, 424–427 (1995).

    CAS  PubMed  Google Scholar 

  16. Guillen, I. et al. The function of engrailed and the specification of Drosophila wing pattern. Development 121, 3447–3456 (1995).

    CAS  PubMed  Google Scholar 

  17. Tabata, T., Schwartz, C., Gustavson, E., Ali, Z. & Kornberg, T. B. Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis. Development 121, 3359–3369 (1995).Shows that the anteroposterior compartment boundary functions as the organizing centre that patterns the complete wing.

    CAS  PubMed  Google Scholar 

  18. Tabata, T. & Kornberg, T. B. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89–102 (1994).

    CAS  PubMed  Google Scholar 

  19. Mullor, J. L., Calleja, M., Capdevila, J. & Guerrero, I. Hedgehog activity, independent of decapentaplegic, participates in wing disc patterning. Development 124, 1227–1237 (1997).

    CAS  PubMed  Google Scholar 

  20. Strigini, M. & Cohen, S. M. A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697–4705 (1997).

    CAS  PubMed  Google Scholar 

  21. Capdevila, J. & Guerrero, I. Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J. 13, 4459–4468 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by Hedgehog protein. Nature 368, 208–214 (1994).Landmark paper showing that the Hedgehog protein can induce the complete duplication of the anterior compartment of Drosophila limbs.

    CAS  PubMed  Google Scholar 

  23. Zecca, M., Basler, K. & Struhl, G. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121, 2265–2278 (1995).Shows that Decapentaplegic has an organizing activity that patterns the whole wing except for the central domain.

    CAS  PubMed  Google Scholar 

  24. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).

    CAS  PubMed  Google Scholar 

  25. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).With reference 24 , this paper showed for the first time that Decapentaplegic (Dpp) functions as a long-range signalling molecule. Reference 25 also shows that Dpp regulates different target genes in a concentration-dependent manner.

    CAS  PubMed  Google Scholar 

  26. Irvine, K. D. & Wieschaus, E. Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).

    CAS  PubMed  Google Scholar 

  27. Diaz-Benjumea, F. J. & Cohen, S. M. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75, 741–752 (1993).

    CAS  PubMed  Google Scholar 

  28. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal–ventral boundary of the developing Drosophila wing. Cell 82, 795–802 (1995).

    CAS  PubMed  Google Scholar 

  29. Doherty, D., Feger, G., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev. 10, 421–434 (1996).

    CAS  PubMed  Google Scholar 

  30. Neumann, C. J. & Cohen, S. M. A hierarchy of cross-regulation involving Notch, Wingless, Vestigial and Cut organizes the dorsal/ventral axis of the Drosophila wing. Development 122, 3477–3485 (1996).

    CAS  PubMed  Google Scholar 

  31. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a Wingless morphogen gradient. Cell 87, 833–844 (1996).

    CAS  PubMed  Google Scholar 

  32. Neumann, C. J. & Cohen, S. M. Long-range action of Wingless organizes the dorsal–ventral axis of the Drosophila wing. Development 124, 871–880 (1997).

    CAS  PubMed  Google Scholar 

  33. Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol. 1, 169–178 (2000).

    CAS  Google Scholar 

  34. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    CAS  PubMed  Google Scholar 

  35. Briscoe, J., Chen, Y., Jessell, T. M. & Struhl, G. A Hedgehog-insensitive form of Patched provides evidence for direct long-range morphogen activity of Sonic Hedgehog in the neural tube. Mol. Cell 7, 1279–1291 (2001).

    CAS  PubMed  Google Scholar 

  36. Lewis, P. M. et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by ptc1. Cell 105, 599–612 (2001).

    CAS  PubMed  Google Scholar 

  37. Chen, Y. & Schier, A. F. The zebrafish nodal signal Squint functions as a morphogen. Nature 411, 607–610 (2001).Provides the first unambiguous evidence that a signalling molecule (Squint) functions as a morphogen in vertebrate embryogenesis.

    CAS  PubMed  Google Scholar 

  38. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    CAS  PubMed  Google Scholar 

  39. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).With reference 38 , this paper visualizes the Decapentaplegic (Dpp) gradient in vivo by using a Dpp–GFP fusion protein as a marker. Reference 39 also shows that endocytic transport is important in generating the Dpp gradient.

    CAS  PubMed  Google Scholar 

  40. Lecuit, T. & Cohen, S. M. Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125, 4901–4907 (1998).

    CAS  PubMed  Google Scholar 

  41. Bejsovec, A. & Wieschaus, E. Signaling activities of the Drosophila wingless gene are separately mutable and appear to be transduced at the cell surface. Genetics 139, 309–320 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Seugnet, L., Simpson, P. & Haenlin, M. Requirement for Dynamin during Notch signaling in Drosophila neurogenesis. Dev. Biol. 192, 585–598 (1997).

    CAS  PubMed  Google Scholar 

  43. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    CAS  PubMed  Google Scholar 

  44. Gonzalez-Gaitan, M. & Jackle, H. The range of spalt-activating Dpp signalling is reduced in endocytosis-defective Drosophila wing discs. Mech. Dev. 87, 143–151 (1999).

    CAS  PubMed  Google Scholar 

  45. Moline, M. M., Southern, C. & Bejsovec, A. Directionality of Wingless protein transport influences epidermal patterning in the Drosophila embryo. Development 126, 4375–4384 (1999).

    CAS  PubMed  Google Scholar 

  46. Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Ingham, P. W. Transducing Hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Denef, N., Neubuser, D., Perez, L. & Cohen, S. M. Hedgehog induces opposite changes in turnover and subcellular localization of Patched and Smoothened. Cell 102, 521–531 (2000).

    CAS  PubMed  Google Scholar 

  49. Alcedo, J., Zou, Y. & Noll, M. Posttranscriptional regulation of smoothened is part of a self-correcting mechanism in the Hedgehog signaling system. Mol. Cell 6, 457–465 (2000).

    CAS  PubMed  Google Scholar 

  50. Martin, V., Carrillo, G., Torroja, C. & Guerrero, I. The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Curr. Biol. 11, 601–607 (2001).

    CAS  PubMed  Google Scholar 

  51. Kjellen, L. & Lindahl, U. Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–475 (1991).

    CAS  PubMed  Google Scholar 

  52. Hacker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997).

    CAS  PubMed  Google Scholar 

  53. Binari, R. C. et al. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623–2632 (1997).

    CAS  PubMed  Google Scholar 

  54. Haerry, T. E., Heslip, T. R., Marsh, J. L. & O'Connor, M. B. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055–3064 (1997).

    CAS  PubMed  Google Scholar 

  55. Tsuda, M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280 (1999).

    CAS  PubMed  Google Scholar 

  56. Lin, X. & Perrimon, N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281–284 (1999).

    CAS  PubMed  Google Scholar 

  57. Baeg, G. H., Lin, X., Khare, N., Baumgartner, S. & Perrimon, N. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87–94 (2001).Together with references 62 and 64 , this paper shows that heparan sulphate proteoglycans are involved in regulating morphogen movement.

    CAS  PubMed  Google Scholar 

  58. Porter, J. A. et al. The product of Hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374, 363–366 (1995).

    CAS  PubMed  Google Scholar 

  59. Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    CAS  PubMed  Google Scholar 

  60. Porter, J. A. et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21–34 (1996).

    CAS  PubMed  Google Scholar 

  61. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 99, 803–815 (1999).

    CAS  PubMed  Google Scholar 

  62. Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998).

    CAS  PubMed  Google Scholar 

  63. The, I., Bellaiche, Y. & Perrimon, N. Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639 (1999).

    CAS  PubMed  Google Scholar 

  64. Senay, C. et al. The EXT1/EXT2 tumor suppressors: catalytic activities and role in heparan sulfate biosynthesis. EMBO Rep. 1, 282–286 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahn, J. et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nature Genet. 11, 137–143 (1995).

    CAS  PubMed  Google Scholar 

  66. Stickens, D. et al. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nature Genet. 14, 25–32 (1996).

    CAS  PubMed  Google Scholar 

  67. Vortkamp, A. et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622 (1996).

    CAS  PubMed  Google Scholar 

  68. St-Jacques, B., Hammerschmidt, M. & McMahon, A. P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, X. et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev. Biol. 224, 299–311 (2000).

    CAS  PubMed  Google Scholar 

  70. Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71 (2000).The activity gradient of Decapentaplegic (Dpp) is visualized by using an antibody that recognizes a phosphorylated form of the Mothers against Dpp protein, a cytoplasmic signal transducer of Dpp signalling.

    CAS  PubMed  Google Scholar 

  71. Tsuneizumi, K. et al. Daughters against Dpp modulates Dpp organizing activity in Drosophila wing development. Nature 389, 627–631 (1997).Shows that the activity gradient of Decapentaplegic (Dpp) is regulated by a negative-feedback loop mediated by the Daughters against Dpp protein.

    CAS  PubMed  Google Scholar 

  72. Funakoshi, Y., Minami, M. & Tabata, T. mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins. Development 128, 67–74 (2001).

    CAS  PubMed  Google Scholar 

  73. Chen, Y. & Struhl, G. Dual roles for Patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996).Shows that Patched restricts the movement of its ligand, Hedgehog, and regulates its range of action.

    CAS  PubMed  Google Scholar 

  74. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).

    CAS  PubMed  Google Scholar 

  75. Sato, A., Kojima, T., Ui-Tei, K., Miyata, Y. & Saigo, K. Dfrizzled-3, a new Drosophila Wnt receptor, acting as an attenuator of Wingless signaling in wingless hypomorphic mutants. Development 126, 4421–4430 (1999).

    CAS  PubMed  Google Scholar 

  76. Chen, C. M. & Struhl, G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126, 5441–5452 (1999).

    CAS  PubMed  Google Scholar 

  77. Cadigan, K. M., Fish, M. P., Rulifson, E. J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998).

    CAS  PubMed  Google Scholar 

  78. Marigo, V. & Tabin, C. J. Regulation of patched by Sonic hedgehog in the developing neural tube. Proc. Natl Acad. Sci. USA 93, 9346–9351 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Marigo, V., Scott, M. P., Johnson, R. L., Goodrich, L. V. & Tabin, C. J. Conservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development 122, 1225–1233 (1996).

    CAS  PubMed  Google Scholar 

  80. Campbell, G. & Tomlinson, A. Transducing the Dpp morphogen gradient in the wing of Drosophila: regulation of Dpp targets by brinker. Cell 96, 553–562 (1999).

    CAS  PubMed  Google Scholar 

  81. Jazwinska, A., Kirov, N., Wieschaus, E., Roth, S. & Rushlow, C. The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. Cell 96, 563–573 (1999).

    CAS  PubMed  Google Scholar 

  82. Minami, M., Kinoshita, N., Kamoshida, Y., Tanimoto, H. & Tabata, T. brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent genes. Nature 398, 242–246 (1999).

    CAS  PubMed  Google Scholar 

  83. Sivasankaran, R., Vigano, M. A., Muller, B., Affolter, M. & Basler, K. Direct transcriptional control of the Dpp target omb by the DNA binding protein Brinker. EMBO J. 19, 6162–6172 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rushlow, C., Colosimo, P. F., Lin, M. C., Xu, M. & Kirov, N. Transcriptional regulation of the Drosophila gene zen by competing Smad and Brinker inputs. Genes Dev. 15, 340–351 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kirkpatrick, H., Johnson, K. & Laughon, A. Repression of Dpp targets by binding of brinker to mad sites. J. Biol. Chem. 276, 18216–18222 (2001).

    CAS  PubMed  Google Scholar 

  86. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by Hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    CAS  PubMed  Google Scholar 

  87. Methot, N. & Basler, K. Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell 96, 819–831 (1999).

    CAS  PubMed  Google Scholar 

  88. Chen, C. H. et al. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98, 305–316 (1999).

    CAS  PubMed  Google Scholar 

  89. Muller, B. & Basler, K. The repressor and activator forms of Cubitus interruptus control Hedgehog target genes through common generic gli-binding sites. Development 127, 2999–3007 (2000).

    CAS  PubMed  Google Scholar 

  90. Brunner, E., Peter, O., Schweizer, L. & Basler, K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833 (1997).

    CAS  PubMed  Google Scholar 

  91. Van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    CAS  PubMed  Google Scholar 

  92. Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608 (1998).

    CAS  PubMed  Google Scholar 

  93. Ding, Q. et al. Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr. Biol. 9, 1119–1122 (1999).

    CAS  PubMed  Google Scholar 

  94. Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    CAS  PubMed  Google Scholar 

  95. Hecht, A. & Kemler, R. Curbing the nuclear activities of β-catenin. Control over Wnt target gene expression. EMBO Rep. 1, 24–28 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    CAS  PubMed  Google Scholar 

  97. Holley, S. A. et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249–253 (1995).

    CAS  PubMed  Google Scholar 

  98. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607 (1999).This article reports that cells in Drosophila imaginal discs project cellular extensions called cytonemes to the anteroposterior compartment border, which functions as the organizing centre of the disc.

    CAS  PubMed  Google Scholar 

  99. Golic, K. G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    CAS  PubMed  Google Scholar 

  100. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  101. Hama, C., Ali, Z. & Kornberg, T. B. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 4, 1079–1093 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank A. Kuroiwa, H. Nakamura, S. Noji and K. Tamura for helpful suggestions. Research conducted in the T.T. laboratory was supported by grants from the Japan Society for the Promotion of Science (Research for the Future Program) and grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

TGF-β

Hh

Wnt

Activin

BMP

Shh

FGF8

Dpp

Wg

en

sal

omb

fringe

Notch

apterous

Dll

vg

Tkv

Sax

Put

Nrt

dishevelled

armadillo

Cd2

Ptc

Sqt

shi

Rab5

Rab7

Smo

sgl

sfl

dally

dally-like

Disp

ttv

human multiple exostoses

Ihh

Ext1

Mad

Dad

mtv

Fz

Dfz2

Dfz3

Brk

Ubx

Sog

Med

Glossary

MESODERM

The third germ layer in the embryo, formed during the process of gastrulation.

SELECTOR GENES

A class of transcription factor, the products of which control the formation and identity of various morphogenetic fields.

CELL AUTONOMOUS

If the gene activity causes the effects only in the cells that express it, its function is cell autonomous; if it causes the effects in cells other than (or in addition to) those expressing it, its function is cell non-autonomous.

PLANAR TRANSCYTOSIS

A mechanism of transcellular transport within the plane of epithelium by which the molecule is internalized by endocytosis, transports intracellularly and is released to signal in the adjacent cells.

DYNAMIN

A GTPase required for clathrin-mediated endocytosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabata, T. Genetics of morphogen gradients. Nat Rev Genet 2, 620–630 (2001). https://doi.org/10.1038/35084577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35084577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing