Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The art and design of genetic screens: zebrafish

Key Points

  • The zebrafish offers a forward genetic system in which to explore vertebrate biological processes.

  • Zebrafish were used to carry out the first large-scale genetic screens in vertebrates, which identified more than 2,000 mutations involved in embryonic development.

  • Haploid and homozygous diploid screens expose recessive alleles in a generation, eliminating the need to work up an entire generation of fish.

  • Screens can use various mutagens, which offer different advantages in mutation rate or the ability to clone the gene.

  • Fluorescent reporter genes are used to visualize biological processes in zebrafish and have been used successfully in genetic screens to identify mutants (for example, digestive and retinal axon mutants).

  • Specific zebrafish behaviours are amenable to genetic screens, including vision response, locomotion and addiction behaviours.

  • Gene function can be explored in zebrafish by identifying mutations that enhance or suppress a phenotype, by isolating new and conditional alleles, as well as by using gene knockdown and gain-of-function technologies.

  • Small molecules can penetrate the chorion of zebrafish embryos and induce embryonic phenotypes within a controlled time during development.

  • Screen design requires a balance between selecting parameters that will best identify mutations of interest with those that are achievable in individual laboratories.

Abstract

Inventive genetic screens in zebrafish are revealing new genetic pathways that control vertebrate development, disease and behaviour. By exploiting the versatility of zebrafish, biological processes that had been previously obscured can be visualized and many of the responsible genes can be isolated. Coupled with gene knockdown and overexpression technologies, and small-molecule-induced phenotypes, genetic screens in zebrafish provide a powerful system by which to dissect vertebrate gene function and gene networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of large-scale F2 genetic screens.
Figure 2: Examples of mutants identified in zebrafish large-scale screening efforts.
Figure 3: Outline of insertional mutagenesis screen.
Figure 4: Fluorescent reporter screens.
Figure 5: The space cadet locomotion mutant.
Figure 6: Behaviour screens: visual adaptation mutants.
Figure 7: Morpholino-induced antisense phenotypes.

Similar content being viewed by others

References

  1. Streisinger, G. et al. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291, 293–296 (1981).A landmark paper in the zebrafish field reveals that zebrafish are suitable for genetic analysis and screening.

    Article  CAS  PubMed  Google Scholar 

  2. Solnica-Krezel, L. et al. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mullins, M. C. et al. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Kimmel, C. B. Genetics and early development of zebrafish. Trends Genet. 5, 283–288 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  6. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).Together, references 5 and 6 are the first to report large-scale genetic screening in a vertebrate organism.

    CAS  PubMed  Google Scholar 

  7. Kikuchi, Y. et al. casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15, 1493–1505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reiter, J. F. et al. Multiple roles for Gata5 in zebrafish endoderm formation. Development 128, 125–135 (2001).

    CAS  PubMed  Google Scholar 

  9. Dickmeis, T. et al. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev. 15, 1487–1492 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kikuchi, Y. et al. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev. 14, 1279–1289 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reiter, J. F. et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 13, 2983–2995 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alexander, J. & Stainier, D. Y. A molecular pathway leading to endoderm formation in zebrafish. Curr. Biol. 9, 1147–1157 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Stainier, D. Y. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996).

    CAS  PubMed  Google Scholar 

  14. Walsh, E. C. & Stainier, D. Y. Udp-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ransom, D. G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996).

    CAS  PubMed  Google Scholar 

  16. Weinstein, B. M. et al. Hematopoietic mutations in the zebrafish. Development 123, 303–309 (1996).

    CAS  PubMed  Google Scholar 

  17. Trede, N. S. et al. Fishing for lymphoid genes. Trends Immunol. 22, 302–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Childs, S. et al. Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Curr. Biol. 10, 1001–1004 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H. et al. A zebrafish model for hepatoerythropoietic porphyria. Nature Genet. 20, 239–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Moens, C. B. et al. valentino: a zebrafish gene required for normal hindbrain segmentation. Development 122, 3981–3990 (1996).

    CAS  PubMed  Google Scholar 

  22. Moens, C. B. et al. Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125, 381–391 (1998).

    CAS  PubMed  Google Scholar 

  23. Popperl, H. et al. lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol. Cell 6, 255–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Beattie, C. E. et al. Early pressure screens. Methods Cell Biol. 60, 71–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Beattie, C. E. et al. Mutations in the stumpy gene reveal intermediate targets for zebrafish motor axons. Development 127, 2653–2662 (2000).

    CAS  PubMed  Google Scholar 

  26. Gray, M. et al. Zebrafish deadly seven functions in neurogenesis. Dev. Biol. 237, 306–323 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Van Eeden, F. J. et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123, 153–164 (1996).

    CAS  PubMed  Google Scholar 

  28. Riley, B. B. & Grunwald, D. J. Efficient induction of point mutations allowing recovery of specific locus mutations in zebrafish. Proc. Natl Acad. Sci. USA 92, 5997–6001 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riley, B. B. & Grunwald, D. J. A mutation in zebrafish affecting a localized cellular function required for normal ear development. Dev. Biol. 179, 427–435 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Alexander, J. et al. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. Dev. Genet. 22, 288–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Knapik, E. W. et al. ENU mutagenesis in zebrafish—from genes to complex diseases. Mamm. Genome 11, 511–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Chakrabarti, S. et al. Frequency of γ-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics 103, 109–123 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Walker, C. & Streisinger, G. Induction of mutations by γ-rays in pregonial germ cells of zebrafish embryos. Genetics 103, 125–136 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ando, H. et al. Efficient mutagenesis of zebrafish by a DNA cross-linking agent. Neurosci. Lett. 244, 81–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Talbot, W. S. & Schier, A. F. Positional cloning of mutated zebrafish genes. Methods Cell Biol. 60, 259–286 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713–2724 (1999).Describes the first large-scale screen in zebrafish using insertional mutagenesis — a method designed to facilitate rapid gene cloning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawakami, K. et al. Proviral insertions in the zebrafish hagoromo gene, encoding an F-box/WD40-repeat protein, cause stripe pattern anomalies. Curr. Biol. 10, 463–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, W. et al. Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development 128, 2385–2396 (2001).

    CAS  PubMed  Google Scholar 

  39. Farber, S. A. et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385–1388 (2001).Zebrafish mutants with non-morphological defects of the digestive tract are identified using a fluorescent reporter to visualize enzymatic activity in live embryos.

    Article  CAS  PubMed  Google Scholar 

  40. Karlstrom, R. O. et al. Zebrafish mutations affecting retinotectal axon pathfinding. Development 123, 427–438 (1996).

    CAS  PubMed  Google Scholar 

  41. Baier, H. et al. Genetic dissection of the retinotectal projection. Development 123, 415–425 (1996).

    CAS  PubMed  Google Scholar 

  42. Fricke, C. et al. astray, a zebrafish roundabout homolog required for retinal axon guidance. Science 292, 507–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Neuhauss, S. C. et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 19, 8603–8615 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997).

    CAS  PubMed  Google Scholar 

  45. Ju, B. et al. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev. Genet. 25, 158–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Granato, M. et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996).

    CAS  PubMed  Google Scholar 

  47. Lorent, K. et al. The zebrafish space cadet gene controls axonal pathfinding of neurons that modulate fast turning movements. Development 128, 2131–2142 (2001).

    CAS  PubMed  Google Scholar 

  48. Baier, H. Zebrafish on the move: towards a behavior-genetic analysis of vertebrate vision. Curr. Opin. Neurobiol. 10, 451–455 (2000).A useful review of the zebrafish behavioural genetic screens that uncovered mutants with visual system defects (references 49–51).

    Article  CAS  PubMed  Google Scholar 

  49. Brockerhoff, S. E. et al. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl Acad. Sci. USA 92, 10545–10549 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, L. & Dowling, J. E. Disruption of the olfactoretinal centrifugal pathway may relate to the visual system defect in night blindness b mutant zebrafish. J. Neurosci. 20, 1883–1892 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, L. & Dowling, J. E. Effects of dopamine depletion on visual sensitivity of zebrafish. J. Neurosci. 20, 1893–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gerlai, R. et al. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol. Biochem. Behav. 67, 773–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Darland, T. et al. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl Acad. Sci. USA 98, 11691–11696 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sheehan, J. et al. Demonstration of the extrinsic coagulation pathway in Teleostei: identification of zebrafish coagulation factor. Proc. Natl Acad. Sci. USA 98, 8768–8773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jagadeeswaran, P. et al. Haemostatic screening and identification of zebrafish mutants with coagulation pathway defects: an approach to identifying novel haemostatic genes in man. Br. J. Haematol. 110, 946–956 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Link, B. A. et al. The zebrafish young mutation acts non-cell-autonomously to uncouple differentiation from specification for all retinal cells. Development 127, 2177–2188 (2000).

    CAS  PubMed  Google Scholar 

  57. Link, B. A. et al. The perplexed and confused mutations affect distinct stages during the transition from proliferating to post-mitotic cells within the zebrafish retina. Dev. Biol. 236, 436–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Herbomel, P. Spinning nuclei in the brain of the zebrafish embryo. Curr. Biol. 17, R627–R628 (1999).

    Article  Google Scholar 

  59. Feldman, B. et al. Zebrafish organizer development and germ-layer formation require Nodal-related signals. Nature 395, 181–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Van Eeden, F. J. et al. Developmental mutant screens in the zebrafish. Methods Cell Biol. 60, 21–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Johnson, S. L. & Weston, J. A. Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration. Genetics 141, 1583–1595 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).Shows that morpholino technology can be used in zebrafish embryos to effectively knock down specific gene expression, thereby providing a reverse genetic approach to exploring gene function.

    Article  CAS  PubMed  Google Scholar 

  63. Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Schauerte, H. E. et al. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125, 2983–2993 (1998).

    CAS  PubMed  Google Scholar 

  65. Ekker, S. C. & Larson, J. D. Morphant technology in model developmental systems Genesis 30, 89–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Liao, E. C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev. 12, 621–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liao, W. et al. Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development 127, 4303–4313 (2000).

    CAS  PubMed  Google Scholar 

  68. Ando, H. et al. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nature Genet. 28, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Scheer, N. et al. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128, 1099–1107 (2001).

    CAS  PubMed  Google Scholar 

  70. Scheer, N. & Camnos-Ortega, J. A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80, 153–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Halloran, M. C. et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127, 1953–1960 (2000).

    CAS  PubMed  Google Scholar 

  72. Raz, E. et al. Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr. Biol. 8, 82–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Ma, C. et al. Production of zebrafish germ-line chimeras from embryo cell cultures. Proc. Natl Acad. Sci. USA 98, 2461–2466 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peterson, R. T. et al. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA 97, 12965–12969 (2000).A screen for small molecules that can modulate embryonic development in a conditional manner reveals the potential of a 'chemical-genetic' approach to studying zebrafish developmental processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peterson, R. T. et al. Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol. 11, 1481–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis. Curr. Biol. 11, 1492–1502 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Walker, C. et al. Haploid screens and γ-ray mutagenesis. Methods Cell Biol. 60, 43–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Schier, A. F. et al. Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165–178 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Zon laboratory for helpful discussions and critical reading of the manuscript. E.E.P. is funded by a long-term postdoctoral fellowship from the Human Frontier Science Program. L.I.Z. is funded by the Howard Hughes Medical Institute and by a National Institutes of Health grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon.

Related links

Related links

DATABASES

LocusLink 

CK

factor VII

Ferrochelatase

Ferroportin 1

fibrinogen

gata1

Hh

Mafb

mck

Nodal

shh

twhh

UDP-glucose dehydrogenase

UROD 

Medscape Drug Info 

atorvastatin 

OMIM 

erythropoietic protoporphyria

hepatoerythropoietic porphyria 

ZFIN 

ast

blw

bon

cas

cfs

cdy

clo

cyc

des

drc

fau

fss

hag

has

jek

krox20

lak

leo

lof

mic

nbb

nev

oep

pie

plx

reg

reg6

slj

smo

spc

sqt

sty

syu

unp

val

weh

yot

yng

yqe

FURTHER INFORMATION

Encyclopedia of Life Sciences: Zebrafish as an experimental organism

Zebrafish anatomy guide

ZFIN (Zebrafish Information Network)

Zon lab

Glossary

GYNOGENESIS

Development of an organism derived from the genetic material of the female gamete.

PARTHENOGENESIS

Development of an organism derived from an unfertilized gamete.

RHOMBOMERE

Each of seven neuroepithelial segments found in the embryonic hindbrain that adopt distinct molecular and cellular properties, restrictions in cell mixing and ordered domains of gene expression.

CHIASMA INTERFERENCE

The inhibition of crossover events during meiosis such that there is generally only one crossover event per chromosome arm.

SWIM BLADDER

An internal fish organ filled with gases, which are regulated to allow the fish to rise and fall. In some teleosts, the swim bladder can have a role in respiration and sound production and reception.

SOMITE

Paired cubical paraxial mesodermal segment, which is often used as a staging index during embryogenesis.

INVERSE PCR

A technique for amplifying DNA by PCR that uses primers that initiate replication in opposite directions to each other, as compared with standard PCR, which uses primers that initiate replication towards one another.

TECTUM

The dorsal portion of the midbrain (mesencephalon) that mediates reflexive responses to visual and auditory stimuli.

DOPAMINERGIC INTERPLEXIFORM CELL

(DI-IPC). Residing in the inner nuclear layer of the retina, this type of cell releases dopamine to regulate light adaptation in the retina.

TELEOST

Ray-finned bony fishes.

TURBIDOMETRY

A way to measure the solution turbidity, this can be used to assay for the formation of fibrin in the form of visible clotting in plasma.

HOLOPROSENCEPHALY

Failure of the forebrain (prosencephalon) to divide into hemispheres or lobes, often accompanied by a deficit in midline facial development.

RNA CAGING

RNA inactivation through the covalent attachment of a photo-removable synthetic compound called the caging group. RNA is reactivated by photo-illumination with a specific light wavelength.

GAL4/UAS SYSTEM

A genetic system for controlling the induction of gene expression. An activator line that expresses the yeast transcriptional activator GAL4 gene under the control of the heat-shock 70 promoter (hsp70) or a tissue-specific promoter is crossed to an effector line that carries the DNA-binding motif of Gal4 (UAS) fused to the gene of interest. As a result, the progeny of this cross expresses the gene of interest in an activator-specific manner.

CHORION

An extraembryonic membrane that surrounds the zebrafish embryo during the first 2 days of development.

OTOLITH

One of the small particles of calcium carbonate in the sacculus of the inner ear. Pressure of the otoliths on the hair cells of the macula (the most sensitive area of the ear) provide sensory inputs about acceleration and gravity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, E., Zon, L. The art and design of genetic screens: zebrafish. Nat Rev Genet 2, 956–966 (2001). https://doi.org/10.1038/35103567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35103567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing