Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exploiting induced and natural epigenetic variation for crop improvement

Key Points

  • Substantial natural variation in DNA methylation patterns exists within many plant species. This variation can influence gene expression and plant traits.

  • Variation in DNA methylation can arise through a range of mechanisms and is often inherited in the progeny of plants.

  • Clonal propagation can lead to epigenetic alleles, which can be stably inherited by regenerated plants. This phenomenon has potential applications for agricultural species that are propagated through grafting or tissue culture.

  • New epigenome editing tools will generate opportunities for creating novel epiallelic variants by alteration of DNA methylation or other chromatin modifications. These tools can be used for crop improvement through epigenome engineering.

Abstract

Plant breeding has traditionally relied on combining the genetic diversity present within a species to develop combinations of alleles that provide desired traits. Epigenetic diversity may provide additional sources of variation within a species that could be captured or created for crop improvement. It will be important to understand the sources of epigenetic variation and the stability of newly formed epigenetic variants over generations to fully use the potential of epigenetic variation to improve crops. The development and application of methods for widespread epigenome profiling and engineering may generate new avenues for using the full potential of epigenetics in crop improvement.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of chromatin domains in plant genomes.
Figure 2: Sources of epigenetic variation.
Figure 3: Epigenetic variation and clonal propagation.
Figure 4: Epigenome editing tools.

References

  1. Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

    CAS  PubMed  Google Scholar 

  2. Garnett, T. et al. Agriculture. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    CAS  PubMed  Google Scholar 

  3. Wallace, J. G., Larsson, S. J. & Buckler, E. S. Entering the second century of maize quantitative genetics. Heredity (Edinb.) 112, 30–38 (2014).

    CAS  Google Scholar 

  4. Ma, X., Zhu, Q., Chen, Y. & Liu, Y. G. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol. Plant. 9, 961–974 (2016).

    CAS  PubMed  Google Scholar 

  5. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Henikoff, S. & Greally, J. M. Epigenetics, cellular memory and gene regulation. Curr. Biol. 26, R644–R648 (2016).

    CAS  PubMed  Google Scholar 

  7. Cuerda-Gil, D. & Slotkin, R. K. Non-canonical RNA-directed DNA methylation. Nat. Plants 2, 16163 (2016).

    CAS  PubMed  Google Scholar 

  8. Gutierrez, C., Desvoyes, B., Vergara, Z., Otero, S. & Sequeira-Mendes, J. Links of genome replication, transcriptional silencing and chromatin dynamics. Curr. Opin. Plant Biol. 34, 92–99 (2016).

    CAS  PubMed  Google Scholar 

  9. Jiang, D. & Berger, F. Histone variants in plant transcriptional regulation. Biochim. Biophys. Acta 1860, 123–130 (2017).

    CAS  Google Scholar 

  10. Wendte, J. M. & Pikaard, C. S. The RNAs of RNA-directed DNA methylation. Biochim. Biophys. Acta 1860, 140–148 (2017).

    CAS  Google Scholar 

  11. Xiao, J., Lee, U. S. & Wagner, D. Tug of war: adding and removing histone lysine methylation in Arabidopsis. Curr. Opin. Plant Biol. 34, 41–53 (2016).

    CAS  PubMed  Google Scholar 

  12. Vidalis, A. et al. Methylome evolution in plants. Genome Biol. 17, 264 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Chen, X. & Zhou, D. X. Rice epigenomics and epigenetics: challenges and opportunities. Curr. Opin. Plant Biol. 16, 164–169 (2013).

    CAS  PubMed  Google Scholar 

  14. Gaydos, L. J., Wang, W. & Strome, S. Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345, 1515–1518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013). This detailed analysis reports the contribution of 86 different genes to the distribution of DNA methylation in A. thaliana.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    CAS  PubMed  Google Scholar 

  18. Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077–2080 (2001).

    CAS  PubMed  Google Scholar 

  19. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    CAS  PubMed  Google Scholar 

  20. Gouil, Q. & Baulcombe, D. C. DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet. 12, e1006526 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Cao, X. & Jacobsen, S. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc. Natl Acad. Sci. USA 99, 16491–16498 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Panda, K. et al. Full-length autonomous transposable elements are preferentially targeted by expression-dependent forms of RNA-directed DNA methylation. Genome Biol. 17, 170 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Nuthikattu, S. et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol. 162, 116–131 (2013). This study documents the role of specific components in true de novo methylation in plants.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bond, D. M. & Baulcombe, D. C. Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 112, 917–922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, L., Mao, L. & Qi, Y. Roles of dicer-like and argonaute proteins in TAS-derived small interfering RNA-triggered DNA methylation. Plant Physiol. 160, 990–999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fultz, D. & Slotkin, R. K. Exogenous transposable elements circumvent identity-based silencing, permitting the dissection of expression-dependent silencing. Plant Cell 29, 360–376 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).

    CAS  PubMed  Google Scholar 

  29. Bewick, A. J. & Schmitz, R. J. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 36, 103–110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tran, R. K. et al. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr. Biol. 15, 154–159 (2005).

    CAS  PubMed  Google Scholar 

  31. Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016). This study is a detailed documentation of similarities and differences in methylome patterning in 34 plant species.

    PubMed  PubMed Central  Google Scholar 

  32. Takuno, S., Ran, J. H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 15222 (2016).

    CAS  PubMed  Google Scholar 

  33. Li, Q. et al. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proc. Natl Acad. Sci. USA 112, 14728–14733 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126, 1189–1201 (2006).

    CAS  PubMed  Google Scholar 

  35. Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl Acad. Sci. USA 113, 9111–9116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Takuno, S. & Gaut, B. S. Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol. Biol. Evol. 29, 219–227 (2012).

    CAS  PubMed  Google Scholar 

  37. Vaughn, M. W. et al. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5, e174 (2007).

    PubMed  PubMed Central  Google Scholar 

  38. Eichten, S. R. et al. Heritable epigenetic variation among maize inbreds. PLoS Genet. 7, e1002372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chodavarapu, R. K. et al. Transcriptome and methylome interactions in rice hybrids. Proc. Natl Acad. Sci. USA 109, 12040–12045 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Eichten, S. R. et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25, 2783–2797 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Regulski, M. et al. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 23, 1651–1662 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmitz, R. J. et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 23, 1663–1674 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Q. et al. Examining the causes and consequences of context-specific differential DNA methylation in maize. Plant Physiol. 168, 1262–1274 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kawakatsu, T. et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166, 492–505 (2016). This study is an in-depth characterization of DNA methylation variation in >1,000 A. thaliana accessions.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Eichten, S. R., Stuart, T., Srivastava, A., Lister, R. & Borevitz, J. O. DNA methylation profiles of diverse Brachypodium distachyon align with underlying genetic diversity. Genome Res. 26, 1520–1531 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Garg, R., Narayana Chevala, V., Shankar, R. & Jain, M. Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci. Rep. 5, 14922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen, X. et al. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet. 10, e1004842 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4, e05255 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Pignatta, D. et al. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife 3, e03198 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Zhang, L. et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8, 14789 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Deng, Y. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962–965 (2017).

    CAS  PubMed  Google Scholar 

  53. Meng, D. et al. Limited contribution of DNA methylation variation to expression regulation in Arabidopsis thaliana. PLoS Genet. 12, e1006141 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    CAS  PubMed  Google Scholar 

  55. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948–952 (2006).

    CAS  PubMed  Google Scholar 

  56. Chandler, V. L. Paramutation: from maize to mice. Cell 128, 641–645 (2007).

    CAS  PubMed  Google Scholar 

  57. Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Johannes, F. et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 5, e1000530 (2009). References 57 and 58 describe the creation and phenotypic characterization of the first epiRIL populations.

    PubMed  PubMed Central  Google Scholar 

  59. Cortijo, S. et al. Mapping the epigenetic basis of complex traits. Science 343, 1145–1148 (2014). This article clearly documents the potential role of epigenetic variation in influencing quantitative traits in plants.

    CAS  PubMed  Google Scholar 

  60. Kooke, R. et al. Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell 27, 337–348 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Y. Y., Fischer, M., Colot, V. & Bossdorf, O. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 197, 314–322 (2013).

    CAS  PubMed  Google Scholar 

  62. Dapp, M. et al. Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat. Plants 1, 15092 (2015).

    CAS  PubMed  Google Scholar 

  63. Hu, L. et al. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc. Natl Acad. Sci. USA 111, 10642–10647 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamauchi, T., Johzuka-Hisatomi, Y., Terada, R., Nakamura, I. & Iida, S. The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant Mol. Biol. 85, 219–232 (2014).

    CAS  PubMed  Google Scholar 

  65. Li, Q. et al. Genetic perturbation of the maize methylome. Plant Cell 26, 4602–4616 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nat. Rev. Genet. 7, 395–401 (2006).

    CAS  PubMed  Google Scholar 

  67. Taudt, A., Colome-Tatche, M. & Johannes, F. Genetic sources of population epigenomic variation. Nat. Rev. Genet. 17, 319–332 (2016).

    CAS  PubMed  Google Scholar 

  68. Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 19, 1419–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bender, J. & Fink, G. R. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83, 725–734 (1995).

    CAS  PubMed  Google Scholar 

  70. Gehring, M., Bubb, K. L. & Henikoff, S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324, 1447–1451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsieh, T. F. et al. Genome-wide demethylation of Arabidopsis endosperm. Science 324, 1451–1454 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zemach, A. et al. Local DNA hypomethylation activates genes in rice endosperm. Proc. Natl Acad. Sci. USA 107, 18729–18734 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ibarra, C. A. et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360–1364 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Park, K. et al. DNA demethylation is initiated in the central cells of Arabidopsis and rice. Proc. Natl Acad. Sci. USA 113, 15138–15143 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodrigues, J. A. & Zilberman, D. Evolution and function of genomic imprinting in plants. Genes Dev. 29, 2517–2531 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yuan, J. et al. Both maternally and paternally imprinted genes regulate seed development in rice. New Phytol. http://dx.doi.org/10.1111/nph.14510 (2017).

  78. Costa, L. M. et al. Maternal control of nutrient allocation in plant seeds by genomic imprinting. Curr. Biol. 22, 160–165 (2012).

    CAS  PubMed  Google Scholar 

  79. Calarco, J. P. et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194–205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsieh, P. H. et al. Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. Proc. Natl Acad. Sci. USA 113, 15132–15137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, R. et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc. Natl Acad. Sci. USA 112, 10804–10809 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Satge, C. et al. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat. Plants 2, 16166 (2016).

    CAS  PubMed  Google Scholar 

  83. Kawakatsu, T. et al. Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat. Plants 2, 16058 (2016). This dissection of cell type-specific methylation patterns in plants reveals mostly similar patterns, with the exception of columella cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pecinka, A. & Mittelsten Scheid, O. Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol. 53, 801–808 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Secco, D. et al. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 4, e09343 (2015). This detailed analysis of methylome and transcriptome response to phosphate stress finds evidence for expression-induced changes in methylation in response to abiotic stress in rice.

    PubMed Central  Google Scholar 

  86. Jiang, C. et al. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 24, 1821–1829 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wibowo, A. et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5, e13546 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Kaeppler, S. M., Kaeppler, H. F. & Rhee, Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 43, 179–188 (2000).

    CAS  PubMed  Google Scholar 

  89. Peschke, V. M., Phillips, R. L. & Gengenbach, B. G. Discovery of transposable element activity among progeny of tissue culture — derived maize plants. Science 238, 804–807 (1987).

    CAS  PubMed  Google Scholar 

  90. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. & Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl Acad. Sci. USA 93, 7783–7788 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rhee, Y., Sekhon, R. S., Chopra, S. & Kaeppler, S. Tissue culture-induced novel epialleles of a Myb transcription factor encoded by pericarp color1 in maize. Genetics 186, 843–855 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015). This study reports the identification of epialleles induced in tissue culture in clonally propagated oil palms.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanurdzic, M. et al. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol. 6, 2880–2895 (2008).

    CAS  PubMed  Google Scholar 

  94. Stroud, H. et al. Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2, e00354 (2013).

    PubMed  PubMed Central  Google Scholar 

  95. Stelpflug, S. C., Eichten, S. R., Hermanson, P. J., Springer, N. M. & Kaeppler, S. M. Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 198, 209–218 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Eichten, S. R. & Springer, N. M. Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress. Front. Plant. Sci. 6, 308 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Song, Q. X. et al. Genome-wide analysis of DNA methylation in soybean. Mol. Plant 6, 1961–1974 (2013).

    CAS  PubMed  Google Scholar 

  98. Hagmann, J. et al. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 11, e1004920 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Le, T. N. et al. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol. 15, 458 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Hollick, J. B. Paramutation and related phenomena in diverse species. Nat. Rev. Genet. 18, 5–23 (2017).

    CAS  PubMed  Google Scholar 

  101. Greaves, I. K. et al. Twenty-four-nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 Arabidopsis hybrids. Proc. Natl Acad. Sci. USA 113, E6895–E6902 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Greaves, I. K. et al. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl Acad. Sci. USA 109, 3570–3575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, Q. et al. Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation. Proc. Natl Acad. Sci. USA 113, E4248–E4256 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jordan, W. T. & Schmitz, R. J. The shocking consequences of hybrid epigenomes. Genome Biol. 17, 85 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Rigal, M. et al. Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc. Natl Acad. Sci. USA 113, E2083–E2092 (2016). In this report, epihybrids between a wild-type parent and a hypomethylated parent reveal widespread redistribution of heterochromatin marks.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lei, M. et al. Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 3553–3557 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams, B. P., Pignatta, D., Henikoff, S. & Gehring, M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet. 11, e1005142 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Wendel, J. F., Jackson, S. A., Meyers, B. C. & Wing, R. A. Evolution of plant genome architecture. Genome Biol. 17, 37 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Zhang, J. et al. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc. Natl Acad. Sci. USA 112, E7022–E7029 (2015). This study provides evidence for ploidy-induced changes in DNA methylation and gene expression in rice.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Edgar, P. P. et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140 year old naturally established neo-allopolyploid monkeyflower. Preprint at bioRxiv https://doi.org/10.1101/094797 (2016).

  111. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    CAS  PubMed  Google Scholar 

  112. Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. van der Graaf, A. et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc. Natl Acad. Sci. USA 112, 6676–6681 (2015). This study is a careful dissection of the rates of spontaneous change in DNA methylation in plants.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Shaw, R. G., Byers, D. L. & Darmo, E. Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155, 369–378 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

    CAS  PubMed  Google Scholar 

  116. Zheng, X. et al. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant's adaptation to drought condition. Sci. Rep. 7, 39843 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, Q., Eichten, S. R., Hermanson, P. J. & Springer, N. M. Inheritance patterns and stability of DNA methylation variation in maize near-isogenic lines. Genetics 196, 667–676 (2014).

    CAS  PubMed  Google Scholar 

  118. Eichten, S. R. et al. Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet. 8, e1003127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Catoni, M. et al. DNA sequence properties that predict susceptibility to epiallelic switching. EMBO J. 36, 617–628 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lewsey, M. G. et al. Mobile small RNAs regulate genome-wide DNA methylation. Proc. Natl Acad. Sci. USA 113, E801–E810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Melnyk, C. W., Molnar, A. & Baulcombe, D. C. Intercellular and systemic movement of RNA silencing signals. EMBO J. 30, 3553–3563 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kasai, A., Bai, S., Hojo, H. & Harada, T. Epigenome editing of potato by grafting using transgenic tobacco as siRNA donor. PLoS ONE 11, e0161729 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Jaligot, E. et al. Epigenetic imbalance and the floral developmental abnormality of the in vitro-regenerated oil palm Elaeis guineensis. Ann. Bot. 108, 1453–1462 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Telias, A. et al. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol. 11, 93 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu, J., Tanino, K. K. & Robinson, S. J. Stable epigenetic variants selected from an induced hypomethylated Fragaria vesca population. Front. Plant Sci. 7, 1768 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Park, M., Keung, A. J. & Khalil, A. S. The epigenome: the next substrate for engineering. Genome Biol. 17, 183 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Johnson, L. M. et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507, 124–128 (2014). In this study, the authors use zinc finger endonucleases to direct de novo DNA methylation in A. thaliana.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Griffin, P. T., Niederhuth, C. E. & Schmitz, R. J. A. Comparative analysis of 5-azacytidine- and zebularine-induced DNA demethylation. G3 (Bethesda) 6, 2773–2780 (2016).

    CAS  Google Scholar 

  132. Waddington, C. H. Canalization of development and genetic assimilation of acquired characters. Nature 183, 1654–1655 (1959).

    CAS  PubMed  Google Scholar 

  133. Wolff, P. et al. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. PLoS Genet. 7, e1002126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, M. et al. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res. 24, 167–176 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Moreno-Romero, J., Jiang, H., Santos-Gonzalez, J. & Kohler, C. Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J. 35, 1298–1311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Probst, A. V. & Mittelsten Scheid, O. Stress-induced structural changes in plant chromatin. Curr. Opin. Plant Biol. 27, 8–16 (2015).

    CAS  PubMed  Google Scholar 

  137. Chen, X., Liu, X., Zhao, Y. & Zhou, D. X. Histone H3K4me3 and H3K27me3 regulatory genes control stable transmission of an epimutation in rice. Sci. Rep. 5, 13251 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Guo, Z. et al. Global epigenomic analysis indicates that epialleles contribute to allele-specific expression via allele-specific histone modifications in hybrid rice. BMC Genomics 16, 232 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. Song, X. J. et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc. Natl Acad. Sci. USA 112, 76–81 (2015).

    CAS  PubMed  Google Scholar 

  140. Jaskiewicz, M., Conrath, U. & Peterhansel, C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12, 50–55 (2011).

    CAS  PubMed  Google Scholar 

  141. Ding, Y., Fromm, M. & Avramova, Z. Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat. Commun. 3, 740 (2012).

    PubMed  Google Scholar 

  142. Sani, E., Herzyk, P., Perrella, G., Colot, V. & Amtmann, A. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol. 14, R59 (2013).

    PubMed  PubMed Central  Google Scholar 

  143. Du, J. et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167–180 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Deleris, A. et al. Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. PLoS Genet. 8, e1003062 (2012). This study shows how loss of DNA methylation at some loci leads to transcriptional repression by the Polycomb complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Greenberg, M. V. et al. Interplay between active chromatin marks and RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet. 9, e1003946 (2013).

    PubMed  PubMed Central  Google Scholar 

  146. Laprell, F., Finkl, K. & Muller, J. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85–88 (2017).

    CAS  PubMed  Google Scholar 

  147. Wang, X. & Moazed, D. DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. Science 356, 88–91 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, L. et al. Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24, 4407–4421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Zabet, N. R., Catoni, M., Prischi, F. & Paszkowski, J. Cytosine methylation at CpCpG sites triggers accumulation of non-CpG methylation in gene bodies. Nucleic Acids Res. 45, 3777–3784 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bewick, A. J. et al. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biol. 18, 65 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. West, P. T. et al. Genomic distribution of H3K9me2 and DNA methylation in a maize genome. PLoS ONE 9, e105267 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the vibrant community of epigenetic researchers and acknowledge that only a subset of critical works is cited in this article owing to space limitations. The authors are grateful to J. Noshay for assistance with figure preparation. C. Hirsch, S. Anderson and S. Eichten provided valuable feedback on the manuscript. The authors also appreciate the constructive feedback from several anonymous reviewers that helped to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathan M. Springer or Robert J. Schmitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Traits

Any measurable aspect of an organism, including morphological, biochemical and molecular properties.

Transgressive segregation

The situation in which offspring (F1, F2 or later generations) exhibit phenotypes that transgress (are outside of) the parental phenotypic range.

Heritable variation

Information in the genome that is transmitted to offspring or daughter cells.

Genomic selection

The use of genetic markers that are spread throughout the genome to select individuals with desired predicted breeding values.

Paramutation

An interaction between alleles in which one alleles triggers a heritable change at the other allele, resulting in altered expression or chromatin state.

Imprinting

Differential expression of alleles depending on parent-of-origin of the allele.

Wide crosses

Crosses between very distantly related members of the same species or between individuals of related species.

RNA-directed DNA methylation

(RdDM). The mechanism by which 24-nt small interfering RNAs can direct DNA methylation to specific genomic loci.

Accessions

Individuals isolated from a single geographical area. An ecotype comprises many accessions from a similar ecological range.

Differentially methylated regions

(DMRs). Genomic regions that have different levels of methylation between sample groups. Can be context specific (CG, CHG or CHH) or can refer to overall methylcytosine content.

Epialleles

Chromatin differences at a locus between different individuals or cells. Note that an epiallele may be due to genetic differences (at cis-genomic or trans-genomic locations). Thus, some epialleles may reflect epigenetic variation but others may reflect genetic variation.

Epigenetic recombinant inbred line

(epiRIL). A quasi-homozygous line that is almost identical at the genetic level but that segregates at the DNA methylation level. Produced from an initial cross between two individuals with few DNA sequence differences but with contrasting DNA methylation profiles, followed by 6–8 generations of self-pollination.

Polyploidization

Whole-genome duplication events that can occur through the doubling of the chromosomes in a single species (autopolyploidization) or through a cross between related species followed by chromosome doubling (allopolyploidization).

Linkage disequilibrium

A measure of whether alleles at two loci coexist in a population in a nonrandom manner. Alleles that are in linkage disequilibrium are found together on the same haplotype more often than would be expected under a random combination of alleles.

Scions

Shoot or branch of a plant that is grafted to a rootstock.

Grafting

The joining of living material from two individuals to generate a chimaera. In plants this generally is performed through grafting of a scion (a branch or bud) from one plant to a rootstock from another plant.

Rootstock

The root system of a plant with the shoot removed onto which another variety is grafted.

Epigenetic quantitative trait loci

(epiQTL). Epigenetic variants that are associated with a trait and that do not have any changes in the DNA sequence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Springer, N., Schmitz, R. Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18, 563–575 (2017). https://doi.org/10.1038/nrg.2017.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2017.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing