Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices

This article has been updated

Key Points

  • There has been a renaissance in single-cell biology, facilitated in part by the rise of microfluidic devices that can facilitate easy capture, processing and profiling of single cells and their components, reducing labour and costs relative to conventional plate-based methods while also improving consistency.

  • The three most common classes of microfluidic device are defined by their fundamental elements: valves, droplets or nanowells. Valve-based microfluidic devices afford control but have limited scale; droplet-based devices have high throughput but limited control; and nanowell-based methods have intermediate scale and control, but greater simplicity in operation. These factors influence the costs and benefits of porting any existing assay to each microfluidic device.

  • Each of these three classes has been used to profile several cellular 'omics' — including the genome, epigenome, transcriptome and proteome — achieving different levels of throughput and efficiency, while leaving opportunities for future development.

  • Emerging efforts are beginning to focus on measuring multiple cellular properties at once, such as the transcriptome and the proteome or the transcriptome and the epigenome, to obtain a more comprehensive picture of cellular phenotype and its drivers.

  • Such comprehensive profiling is especially important when studying single cells owing to technical and biological noise sources, which limit the utility of any given measurement from any given cell.

  • Sequencing is increasingly becoming the de facto method for profiling information from single cells given its bandwidth relative to the information content of a single cell and the growing ease of mapping information in a nucleic acid readout. Yet, given fixed sequencing bandwidth and the often limited utility of any one measurement, it is important to carefully consider how to most judiciously allocate reads over cells and their variables.

Abstract

Recent advances in cellular profiling have demonstrated substantial heterogeneity in the behaviour of cells once deemed 'identical', challenging fundamental notions of cell 'type' and 'state'. Not surprisingly, these findings have elicited substantial interest in deeply characterizing the diversity, interrelationships and plasticity among cellular phenotypes. To explore these questions, experimental platforms are needed that can extensively and controllably profile many individual cells. Here, microfluidic structures — whether valve-, droplet- or nanowell-based — have an important role because they can facilitate easy capture and processing of single cells and their components, reducing labour and costs relative to conventional plate-based methods while also improving consistency. In this article, we review the current state-of-the-art methodologies with respect to microfluidics for mammalian single-cell 'omics' and discuss challenges and future opportunities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Technical and biological noise in single-cell measurements.
Figure 2: Overview of the major microfluidic device types: valves, droplets and nanowells.
Figure 3: Selected examples of microfluidic devices used to measure single-cell genomes and epigenomes.
Figure 4: Selected examples of microfluidic devices used to measure single-cell transcriptomes and proteomes.
Figure 5: Future directions and extensions for microfluidic devices.

Similar content being viewed by others

Change history

  • 19 April 2017

    In the acknowledgements section of this article, the number of an NIH grant awarded to A.K.S. was corrected from U24AI11862 to U24AI118672.

References

  1. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013). A demonstration of how covariation in gene expression in scRNA-Seq data can be used to identify cellular circuits and molecular drivers of behaviour in seemingly identical immune cells. It also nicely demonstrates the use of microfluidic devices for targeted single-cell mRNA measurements (STA).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lohr, J. G. et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32, 479–484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohen, A. A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Feinerman, O. et al. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wurtzel, O. et al. A generic and cell-type-specific wound response precedes regeneration in planarians. Dev. Cell 35, 632–645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bjorklund, A. K. et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451–460 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002). A fundamental work that describes how to think about the two non-technical sources (intrinsic and extrinsic) of noise that influence single-cell measurements and their interpretation.

    Article  CAS  PubMed  Google Scholar 

  13. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan, H. C., Fu, G. K. & Fodor, S. P. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Genshaft, A. S et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 188 (2016). These authors used commercial valve-based microfluidics to perform multiplexed single-cell transcriptome and protein profiling from the same cell, an important demonstration of simultaneous single-cell multi-omic profiling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Darmanis, S. et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 14, 380–389 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Ramirez, L., Herschkowitz, J. I. & Wang, J. Stand-sit microchip for high-throughput, multiplexed analysis of single cancer cells. Sci. Rep. 6, 32505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varadarajan, N. et al. Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving. Proc. Natl Acad. Sci. USA 109, 3885–3890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Fan, H. C., Wang, J., Potanina, A. & Quake, S. R. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol. 29, 51–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nat. Biotechnol. 21, 1179–1183 (2003). A review on the mechanics, operation and utility of valve-based microfluidic platforms, with a detailed discussion of applications in many fields, including biology.

    Article  CAS  PubMed  Google Scholar 

  22. Gawad, C., Koh, W. & Quake, S. R. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl Acad. Sci. USA 111, 17947–17952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012). An early demonstration of single-cell genome sequencing applied to microfluidic devices, in which de novo mutations in human sperm were identified and quantified with a custom valve-based device.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120–1127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016). A review of the current state of the art in single-cell genomics, including key insights into the limitations of handling genetic material from a single cell and important work in the field.

    Article  CAS  PubMed  Google Scholar 

  27. Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. & Love, J. C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeng, Y., Novak, R., Shuga, J., Smith, M. T. & Mathies, R. A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 82, 3183–3190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo, M. T., Rotem, A., Heyman, J. A. & Weitz, D. A. Droplet microfluidics for high-throughput biological assays. Lab Chip 12, 2146–2155 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, H., Jenkins, G., Zou, Y., Zhu, Z. & Yang, C. J. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. Anal. Chem. 84, 3599–3606 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). A high-throughput scRNA-Seq platform that uses droplet-based capture and early bead-based barcoding to profile thousands of single cells in a cost-efficient manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015). A high-throughput scRNA-Seq platform, distinguished from the platform in reference 31 through its use of hydrogel beads that enable more efficient bead loading and linear amplification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Love, J. C., Ronan, J. L., Grotenbreg, G. M., van der Veen, A. G. & Ploegh, H. L. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 24, 703–707 (2006). Pioneering work that applies nanowell arrays to enable high-throughput screening of hybridomas for specific antibodies.

    Article  CAS  PubMed  Google Scholar 

  34. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Yao, X. et al. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integr. Biol. (Camb.) 6, 388–398 (2014).

    Article  CAS  Google Scholar 

  36. Citri, A., Pang, Z. P., Sudhof, T. C., Wernig, M. & Malenka, R. C. Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat. Protoc. 7, 118–127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, Q. et al. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl Acad. Sci. USA 109, 419–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Dura, B. et al. Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat. Commun. 6, 5940 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006). An early microfluidic assay that confined secreted cellular products to effectively probe the abundance of β-galactosidase in E. coli with single-molecule resolution and sensitivity.

    Article  CAS  PubMed  Google Scholar 

  41. Hindson, C. M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003–1005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. White, A. K. et al. High-throughput microfluidic single-cell RT-qPCR. Proc. Natl Acad. Sci. USA 108, 13999–14004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Warren, L., Bryder, D., Weissman, I. L. & Quake, S. R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl Acad. Sci. USA 103, 17807–17812 (2006). An early demonstration of single-cell transcriptomics performed in microfluidic devices, with RT–qPCR used to perform in-device quantification of transcripts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, Q. et al. Multicolor combinatorial probe coding for real-time PCR. PLoS ONE 6, e16033 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kazane, S. A. et al. Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR. Proc. Natl Acad. Sci. USA 109, 3731–3736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ackermann, A. M., Wang, Z., Schug, J., Naji, A. & Kaestner, K. H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 5, 233–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Agasti, S. S., Liong, M., Peterson, V. M., Lee, H. & Weissleder, R. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J. Am. Chem. Soc. 134, 18499–18502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marinov, G. K. et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24, 496–510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Redmond, D., Poran, A. & Elemento, O. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med. 8, 80 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, Z., Lu, S. & Huang, Y. Microfluidic whole genome amplification device for single cell sequencing. Anal. Chem. 86, 9386–9390 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. van den Bos, H. et al. Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer's disease neurons. Genome Biol. 17, 116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, Y., Swennenhuis, J. F., Rho, H. S., Le Gac, S. & Terstappen, L. W. Parallel single cancer cell whole genome amplification using button-valve assisted mixing in nanoliter chambers. PLoS ONE 9, e107958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Szulwach, K. E. et al. Single-cell genetic analysis using automated microfluidics to resolve somatic mosaicism. PLoS ONE 10, e0135007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ning, L. et al. Quantitative assessment of single-cell whole genome amplification methods for detecting copy number variation using hippocampal neurons. Sci. Rep. 5, 11415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ni, X. et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl Acad. Sci. USA 110, 21083–21088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumaresan, P., Yang, C. J., Cronier, S. A., Blazej, R. G. & Mathies, R. A. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal. Chem. 80, 3522–3529 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Zhu, Z. et al. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. Lab Chip 12, 3907–3913 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Fu, Y. et al. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl Acad. Sci. USA 112, 11923–11928 (2015). Single-cell genome profiling with droplet-based capture that demonstrates the utility of isolating components from individual cells to perform amplification in droplet, improving coverage relative to amplification en masse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leung, K. et al. Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates. Proc. Natl Acad. Sci. USA 113, 8484–8489 (2016). High-throughput single-cell MDA performed in nanolitre volumes with commercial liquid dispensers, highlighting robust coverage of single-cell genomes in ovarian cancer cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gole, J. et al. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat. Biotechnol. 31, 1126–1132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jordan, I. K., Makarova, K. S., Spouge, J. L., Wolf, Y. I. & Koonin, E. V. Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res. 11, 555–565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paguirigan, A. L. et al. Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci. Transl Med. 7, 281re2 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ranasinghe, S. et al. Antiviral CD8+ T cells restricted by human leukocyte antigen class II exist during natural HIV infection and exhibit clonal expansion. Immunity 45, 917–930 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Suva, M. L., Riggi, N. & Bernstein, B. E. Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lorthongpanich, C. et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341, 1110–1112 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheow, L. F. et al. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat. Methods 13, 833–836 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015). These authors used a commercial valve-based microfluidic platform to perform single-cell ATAC-seq, a transposase-based assay that generates NGS libraries of open chromatin regions with single-base-pair resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aguilar, C. A. & Craighead, H. G. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics. Nat. Nanotechnol. 8, 709–718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, M. et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487, 510–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Grun, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heimberg, G., Bhatnagar, R., El-Samad, H. & Thomson, M. Low Dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell Syst. 2, 239–250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bacher, R. & Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, 63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Faridani, O. R. et al. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 34, 1264–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ziegenhain, C. et al. Comparative analysis of single-cell RNA-sequencing methods. Mol. Cell 65, 631–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Stubbington, M. J. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods http://dx.doi.org/10.1038/nmeth.4179 (2017).

  97. DeKosky, B. J. et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat. Biotechnol. 31, 166–169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bose, S. et al. Scalable microfluidics for single-cell RNA printing and sequencing. Genome Biol. 16, 120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yuan, J. & Sims, P. A. An automated microwell platform for large-scale single cell RNA-Seq. Sci. Rep. 6, 33883 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fan, R. et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26, 1373–1378 (2008). A single-cell barcoded chip that used antibodies labelled with nucleotides to enable detection of a panel of secreted proteins from individual cells isolated from whole blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ma, C. et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17, 738–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lu, Y. et al. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc. Natl Acad. Sci. USA 112, E607–E615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, J. et al. Quantitating cell–cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett. 12, 6101–6106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huang, B. et al. Counting low-copy number proteins in a single cell. Science 315, 81–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Blazek, M. et al. Proximity ligation assay for high-content profiling of cell signaling pathways on a microfluidic chip. Mol. Cell. Proteomics 12, 3898–3907 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Landegren, U. et al. Opportunities for sensitive plasma proteome analysis. Anal. Chem. 84, 1824–1830 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Assarsson, E. et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ullal, A. V. et al. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine-needle aspirates. Sci. Transl Med. 6, 219ra9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Albayrak, C. et al. Digital quantification of proteins and mRNA in single mammalian cells. Mol. Cell 61, 914–924 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Hughes, A. J. et al. Single-cell western blotting. Nat. Methods 11, 749–755 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ozkumur, A. Y., Goods, B. A. & Love, J. C. Development of a high-throughput functional screen using nanowell-assisted cell patterning. Small 11, 4643–4650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Han, Q. et al. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl Acad. Sci. USA 109, 1607–1612 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Liao, M. C. et al. Single-cell detection of secreted Aβ and sAPPα from human IPSC-derived neurons and astrocytes. J. Neurosci. 36, 1730–1746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Steege, D. A. Emerging features of mRNA decay in bacteria. RNA 6, 1079–1090 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Clingenpeel, S., Clum, A., Schwientek, P., Rinke, C. & Woyke, T. Reconstructing each cell's genome within complex microbial communities — dream or reality? Front. Microbiol. 5, 771 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Blainey, P. C. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37, 407–427 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. McLean, J. S. & Lasken, R. S. Single cell genomics of bacterial pathogens: outlook for infectious disease research. Genome Med. 6, 108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sun, B. et al. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol. Anal. Chem. 85, 1540–1546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yamanaka, Y. J. et al. Single-cell analysis of the dynamics and functional outcomes of interactions between human natural killer cells and target cells. Integr. Biol. (Camb.) 4, 1175–1184 (2012).

    Article  CAS  Google Scholar 

  124. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Satija, R. & Shalek, A. K. Heterogeneity in immune responses: from populations to single cells. Trends Immunol. 35, 219–229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jovanovic, M. et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science 347, 1259038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Frisk, T. W., Khorshidi, M. A., Guldevall, K., Vanherberghen, B. & Onfelt, B. A silicon-glass microwell platform for high-resolution imaging and high-content screening with single cell resolution. Biomed. Microdevices 13, 683–693 (2011).

    Article  PubMed  Google Scholar 

  128. Zaretsky, I. et al. Monitoring the dynamics of primary T cell activation and differentiation using long term live cell imaging in microwell arrays. Lab Chip 12, 5007–5015 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Khorshidi, M. A. et al. Analysis of transient migration behavior of natural killer cells imaged in situ and in vitro. Integr. Biol. (Camb.) 3, 770–778 (2011).

    Article  CAS  Google Scholar 

  130. Wheeler, A. R. et al. Microfluidic device for single-cell analysis. Anal. Chem. 75, 3581–3586 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Kimmerling, R. J. et al. A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat. Commun. 7, 10220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cermak, N. et al. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol. 34, 1052–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stevens, M. M. et al. Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat. Biotechnol. 34, 1161–1167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7, 387–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Agresti, J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl Acad. Sci. USA 107, 4004–4009 (2010). Droplet-based screening of single cells undergoing directed evolution, with most active cells selected based on their fluorescence on exposure to substrates that initiate turnover of proteins on their surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167, 1883–1896.e15 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016). This review highlights computational frameworks for inferring cellular states from single-cell genomic profiling data, with a detailed survey of current methods and the computational challenges that accompany improved experimental throughput.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kim, J. K., Kolodziejczyk, A. A., Ilicic, T., Teichmann, S. A. & Marioni, J. C. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun. 6, 8687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nagano, T. et al. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat. Protoc. 10, 1986–2003 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Burg, T. P. & Manalis, S. R. Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 83, 2698–2700 (2003).

    Article  CAS  Google Scholar 

  146. Zhao, W. et al. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 6, 524–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Todhunter, M. E. et al. Programmed synthesis of three-dimensional tissues. Nat. Methods 12, 975–981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lander, E. S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Leung, K. et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc. Natl Acad. Sci. USA 109, 7665–7670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lovkvist, C., Dodd, I. B., Sneppen, K. & Haerter, J. O. DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res. 44, 5123–5132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rodgers-Melnick, E., Vera, D. L., Bass, H. W. & Buckler, E. S. Open chromatin reveals the functional maize genome. Proc. Natl Acad. Sci. USA 113, E3177–E3184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. C. Love, A. S Genshaft, K. E. Kolb, C. G. K. Ziegler and S. L. Carroll for helpful comments and suggestions. This work was supported by the Searle Scholars Program (A.K.S.), the Beckman Young Investigator Program (A.K.S.), a US National Institutes of Health (NIH) New Innovator Award DP2OD020839 (A.K.S.), NIH grants U24AI118672 (A.K.S.), P50HG006193 (A.K.S.), P01GM096971 (D.A.W.), P01HL120839 (D.A.W.) and R01EB014703 (D.A.W.), US National Science Foundation (NSF) Materials Research Science and Engineering Center grant DMR-1420570 (D.A.W.) and NSF grant DMR-1310266 (D.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alex K. Shalek or David A. Weitz.

Ethics declarations

Competing interests

D.A.W. is a founder of 1-CellBio, a company that provides equipment for preparing samples for single-cell sequencing, as well as Hunter BioDiscovery and SphereBio, companies that employ single-cell analysis for diagnostic and therapeutic applications. D.A.W. and A.K.S. have both filed patents on work that can be used to prepare samples for single-cell sequencing. S.M.P. declares no competing interests.

Related links

FURTHER INFORMATION

1-Cell

10x genomics

Fluidigm

PowerPoint slides

Glossary

Spatial encoding

Stratifying analytes (cells or multiple cellular products) by physical confinement on a microfluidic chip.

Spectral encoding

Stratifying analytes (multiple cellular products) using different colours of fluorescence.

Temporal encoding

Stratifying analytes (cells or multiple cellular products) by measuring them sequentially.

Exome sequencing

Selective amplification and sequencing of the protein- coding regions of the genome using exon-specific priming.

Direct deterministic phasing

(DDP). The chromosomes of individual cells are partitioned, isolated and amplified using multiple displacement amplification. The products are then flushed and analysed by molecular haplotyping.

Transposase

An enzyme that catalyses the movement of a transposable DNA element into another DNA sequence (for example, a genome) by a cut and paste mechanism. A hyperactive variant of the Tn5 transposase is now commonly used to insert adaptor sequences for next-generation sequencing library preparation. If performed on native chromosomes, the transposase can only bind to exposed DNA, revealing accessible DNA regions.

Zero inflation

Owing to inefficiencies in detection, the distribution of counts for several detected genes can be artificially inflated by the abundance of 'zeros' (detection failures) during normalization.

Micrococcal nuclease

(MNase). An endo-exo nuclease derived from Staphylococcus aureus. When applied to single-stranded and double-stranded DNA, MNase will digest all accessible DNA, enabling the study of which DNA regions are occluded with chromatin.

Mass cytometry

Cells are tagged with antibodies that have been labelled with rare earth metal isotopes, nebulized and passed through a quadrapole mass spectrometer for detection. The abundance of a rare earth metal can thus be used as a proxy for the level of the protein in the single cell. Importantly, whereas the number of proteins that can be detected at once with fluorescent labels is limited owing to overlap between emission spectra, mass cytometry can detect tens of proteins in parallel because individual isotopes of rare earth metals have well-defined, non-overlapping masses.

Directed evolution

A technique in which a series of genetic variants is introduced into a cell population, which are then screened with a fitness assay to isolate a desired phenotype. The genetic variants responsible for the greatest fitness are identified by sequencing the surviving cell population for the target gene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakadan, S., Shalek, A. & Weitz, D. Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices. Nat Rev Genet 18, 345–361 (2017). https://doi.org/10.1038/nrg.2017.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2017.15

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research