Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The life aquatic: advances in marine vertebrate genomics

Key Points

  • Marine vertebrates are relatively understudied at the genomic level compared to their terrestrial counterparts. Closing this gap is of the utmost importance because marine vertebrates have key roles in marine ecosystems and are a major source of protein for humans worldwide.

  • Genomic resources have become accessible to more study systems owing to both the increase in molecular and computational techniques available for studying non-model organisms (such as reduced-representation and transcriptome sequencing) and the rapid decline in sequencing costs.

  • Recent studies comparing the genomes of marine vertebrates to terrestrial vertebrates have offered key insights into the process of adaptation to the marine environment. In particular, these studies have shown that many of the same pathways often underlie adaptation to the marine environment in different taxa.

  • Genes underlying morphological traits (HOX genes) remain largely conserved between marine and terrestrial sister taxa. Instead, less constrained cis-regulatory mutations have been found to underlie morphological evolution.

  • Marine environments often have a low cost of dispersal and few physical barriers to gene flow, and they support large populations. Despite these features, genomic analyses have identified structuring between subpopulations that other markers (such as mitochondrial control regions and microsatellites) have failed to detect.

  • Large populations in the ocean can harbour large pools of genetic diversity that can facilitate adaptation to new, different environments.

  • Marine vertebrates are at risk owing to climate change, overfishing, pollution and numerous other challenges. Genomics can help characterize both the responses to new stressors and the resiliency of a population.

Abstract

The ocean is hypothesized to be where life on earth originated, and subsequent evolutionary transitions between marine and terrestrial environments have been key events in the origin of contemporary biodiversity. Here, we review how comparative genomic approaches are an increasingly important aspect of understanding evolutionary processes, such as physiological and morphological adaptation to the diverse habitats within the marine environment. In addition, we highlight how population genomics has provided unprecedented resolution for population structuring, speciation and adaptation in marine environments, which can have a low cost of dispersal and few physical barriers to gene flow, and can thus support large populations. Building upon this work, we outline the applications of genomics tools to conservation and their relevance to assessing the wide-ranging impact of fisheries and climate change on marine species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vast diversity in the marine environment.
Figure 2: Genome assemblies through the years.
Figure 3: Genomic insights into macroevolutionary transitions.
Figure 4: Genomic regions linked to local adaptation and associated with high population differentiation.

Similar content being viewed by others

References

  1. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Nisbet, E. G. & Sleep, N. H. The habitat and nature of early life. Nature 409, 1083–1091 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 9, e1001127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tucker, M. A. & Rogers, T. L. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. R. Soc. B 281, 20142103 (2014).

    Article  PubMed  Google Scholar 

  5. Food and Agriculture Organization of the United Nations. The state of food and agriculture: innovation in family farming (FAO, 2014).

  6. McGowen, M. R., Grossman, L. I. & Wildman, D. E. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown. Proc. R. Soc. B 279, 3643–3651 (2012). This was the first comparative genomics study to use whole annotated genomes of terrestrial and marine sister taxa (in this case, the cow and dolphin) to elucidate the genomic underpinnings of adaptation associated with secondary colonization of the marine environment.

    Article  PubMed  Google Scholar 

  7. Foote, A. D. et al. Convergent evolution of the genomes of marine mammals. Nat. Genet. 47, 272–275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yim, H. S. et al. Minke whale genome and aquatic adaptation in cetaceans. Nat. Genet. 46, 88–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, X. et al. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat. Commun. 4, 2708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gagnaire, P. -A. et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol. Appl. 8, 769–786 (2015). This paper provides a comprehensive overview of how genomic data can be harnessed to improve estimates of dispersal and population connectivity.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Williams, T. M. The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Phil. Trans. R. Soc. Lond. B 354, 193–201 (1999).

    Article  Google Scholar 

  12. Tucker, V. A. The energetic cost of moving about. Am. Sci. 63, 413–419 (1975).

    CAS  PubMed  Google Scholar 

  13. Amemiya, C. T. et al. The African coelacanth genome provides insights into tetrapod evolution. Nature 496, 311–316 (2013). This article presents the sequencing and subsequent analysis of the coelacanth genome and reveals key insights into transitions from the marine to the terrestrial environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thewissen, J. G. M. & Bajpai, S. Whale origins as a poster child for macroevolution: fossils collected in the last decade document the ways in which Cetacea (whales, dolphins, and porpoises) became aquatic, a transition that is one of the best documented examples of macroevolution in mammals. BioScience 51, 1037–1049 (2001).

    Article  Google Scholar 

  15. Uhen, M. D. Evolution of marine mammals: back to the sea after 300 million years. Anat. Rec. 290, 514–522 (2007).

    Article  Google Scholar 

  16. McGowen, M. R., Gatesy, J. & Wildman, D. E. Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends Ecol. Evol. 29, 336–346 (2014).

    Article  PubMed  Google Scholar 

  17. Perrin, W. F., Würsig, B. & Thewissen, J. G. M. (eds) Encyclopedia of Marine Mammals Vol. 47 (Elsevier, 2008).

    Google Scholar 

  18. Berta, A., Sumich, J. L. & Kovacs, K. M. Marine Mammals: Evolutionary Biology 2nd edn (Academic Press, 2006).

    Google Scholar 

  19. Nikaido, M. et al. Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res. 23, 1740–1748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, K. et al. The loss of taste genes in cetaceans. BMC Evol. Biol. 14, 218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng, P., Zheng, J., Rossiter, S. J., Wang, D. & Zhao, H. Massive losses of taste receptor genes in toothed and baleen whales. Genome Biol. Evol. 6, 1254–1265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huebner, A. K. et al. Nonsense mutations in SMPX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am. J. Hum. Genet. 88, 621–627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lopez-Rios, J. et al. Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs. Nature 511, 46–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Z. et al. Adaptive evolution of 5′HoxD genes in the origin and diversification of the cetacean flipper. Mol. Biol. Evol. 26, 613–622 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Stern, D. L. & Orgogozo, V. The loci of evolution: how predictable is genetic evolution? Evolution 62, 2155–2177 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen, S. et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 46, 253–260 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Tine, M. et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 5, 5770 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schultz, E. T. & McCormick, S. D. in Fish Physiology: Euryhaline Fishes 1st edn (ed. McCormick, S. D.) (Elsevier, 2013).

    Google Scholar 

  31. Taylor, J. S., Braasch, I., Frickey, T., Meyer, A. & Van de Peer, Y. Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res. 13, 382–390 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957 (2004).

    Article  PubMed  Google Scholar 

  33. Star, B. et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature 477, 207–210 (2011). This paper presents the first annotated genome sequence for a commercially important fish species, revealing complex thermal adaptation and an unusual genome architecture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fletcher, G. L., Hew, C. L. & Davies, P. L. Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63, 359–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Shin, S. C. et al. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biol. 15, 468 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams, T. M. et al. Travel at low energetic cost by swimming and wave-riding bottlenose dolphins. Nature 355, 821–823 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572 (1994).

    Article  Google Scholar 

  38. Palumbi, S. R. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13, 146–158 (2003).

    Article  Google Scholar 

  39. Block, B. A. et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Shillinger, G. L. et al. Persistent leatherback turtle migrations present opportunities for conservation. PLoS Biol. 6, e171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stone, G., Florez-Gonzalez, L. & Katona, S. Whale migration record. Nature 346, 705 (1990).

    Article  Google Scholar 

  42. Bonfil, R. et al. Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310, 100–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Waples, R. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J. Hered. 89, 438–450 (1998).

    Article  Google Scholar 

  44. Ward, R. D., Woodwark, M. & Skibinski, D. O. F. A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J. Fish Biol. 44, 213–232 (1994).

    Article  Google Scholar 

  45. Hedgecock, D., Barber, P. H. & Edmands, S. Genetic approaches to measuring connectivity. Oceanography 20, 70–79 (2007).

    Article  Google Scholar 

  46. Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).

    Article  Google Scholar 

  47. Ryman, N., Lagercrantz, U., Andersson, L., Chakraborty, R. & Rosenberg, R. Lack of correspondence between genetic and morphologic variability patterns in Atlantic herring (Clupea harengus). Heredity 53, 687–704 (1984).

    Article  Google Scholar 

  48. Gaither, M. R., Toonen, R. J., Robertson, D. R., Planes, S. & Bowen, B. W. Genetic evaluation of marine biogeographical barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus fulvus). J. Biogeog. 37, 133–147 (2010).

    Article  Google Scholar 

  49. Thompson, K. F., Patel, S., Baker, C. S., Constantine, R. & Millar, C. D. Bucking the trend: genetic analysis reveals high diversity, large population size and low differentiation in a deep ocean cetacean. Heredity 116, 277–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Quérouil, S. et al. High gene flow in oceanic bottlenose dolphins (Tursiops truncatus) of the North Atlantic. Conserv. Genet. 8, 1405–1419 (2007).

    Article  CAS  Google Scholar 

  51. Limborg, M. T. et al. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol. Ecol. 21, 3686–3703 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Mariani, S. et al. North Sea herring population structure revealed by microsatellite analysis. Mar. Ecol. Progr. Ser. 303, 245–257 (2005).

    Article  Google Scholar 

  53. Lamichhaney, S. et al. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc. Natl Acad. Sci. USA 109, 19345–19350 (2012). This study was one of the first to harness and convincingly demonstrate the potential of genomic sequencing to detect both cryptic population structure and local adaptation in a pelagic fish stock with high effective population size, which had been largely undetected by previous studies that used traditional molecular markers.

    Article  PubMed  Google Scholar 

  54. Kimura, M. & Ohta, T. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. McKinnon, J. S. & Rundle, H. D. Speciation in nature: the threespine stickleback model systems. Trends Ecol. Evol. 17, 480–488 (2002).

    Article  Google Scholar 

  56. Lescak, E. A. et al. Evolution of stickleback in 50 years on earthquake-uplifted islands. Proc. Natl Acad. Sci. USA 112, E7204–E7212 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307, 1928–1933 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Jones, F. C. et al. A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr. Biol. 22, 83–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012). This landmark paper is an exemplary application of how high-quality reference genomes combined with population genomic data can provide novel insights and resolution into key genomic changes during adaptive divergence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Manel, S. et al. Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol. Ecol. 25, 170–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Bradbury, I. R. et al. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish. Evol. Appl. 6, 450–461 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nielsen, E. E. et al. Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nat. Commun. 3, 851 (2012). This paper demonstrates how gene-associated markers allow the assignment of commercially important fish species to their population of origin, providing unprecedented resolution for using molecular forensics in marine fisheries management.

    Article  CAS  PubMed  Google Scholar 

  64. Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).

    Article  Google Scholar 

  65. Ward, R. D., Hanner, R. & Hebert, P. D. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish. Biol. 74, 329–356 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Waples, R. S. & Gaggiotti, O. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15, 1419–1439 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Marko, P. B. & Hart, M. W. The complex analytical landscape of gene flow inference. Trends Ecol. Evol. 26, 448–456 (2011).

    Article  PubMed  Google Scholar 

  68. Harrison, Hugo, B. et al. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr. Biol. 22, 1023–1028 (2012).

    Article  CAS  Google Scholar 

  69. Goncalves da Silva, A., Appleyard, S. A. & Upston, J. Establishing the evolutionary compatibility of potential sources of colonizers for overfished stocks: a population genomics approach. Mol. Ecol. 24, 564–579 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Horne, J. B., van Herwerden, L., Abellana, S. & McIlwain, J. L. Observations of migrant exchange and mixing in a coral reef fish metapopulation link scales of marine population connectivity. J. Hered. 104, 532–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Planes, S., Jones, G. P. & Thorrold, S. R. Larval dispersal connects fish populations in a network of marine protected areas. Proc. Natl Acad. Sci. USA 106, 5693–5697 (2009).

    Article  PubMed  Google Scholar 

  72. Bowden, R. et al. Genomic tools for evolution and conservation in the chimpanzee: Pan troglodytes ellioti is a genetically distinct population. PLoS Genet. 8, e1002504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Palamara, P. F. & Pe'er, I. Inference of historical migration rates via haplotype sharing. Bioinformatics 29, i180–i188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014). This article presents a meta-analysis of over 11,000 microsatellite loci across 140 species, and shows that allelic richness and heterozygosity are generally lower in overfished populations, which could hamper the evolutionary potential of these populations.

    Article  PubMed  Google Scholar 

  75. Ruzzante, D., Taggart, C., Doyle, R. & Cook, D. Stability in the historical pattern of genetic structure of Newfoundland cod (Gadus morhua) despite the catastrophic decline in population size from 1964 to 1994. Conserv. Genet. 2, 257–269 (2001).

    Article  CAS  Google Scholar 

  76. Therkildsen, N. O., Nielsen, E. E., Swain, D. P. & Pedersen, J. S. Large effective population size and temporal genetic stability in Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 67, 1585–1595 (2010).

    Article  Google Scholar 

  77. Halffman, C. M. et al. Early human use of anadromous salmon in North America at 11,500 y ago. Proc. Natl Acad. Sci. USA 112, 12344–12348 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl Acad. Sci. USA 106, 9987–9994 (2009).

    Article  PubMed  Google Scholar 

  79. Jørgensen, C. et al. Ecology: managing evolving fish stocks. Science 318, 1247–1248 (2007).

    Article  PubMed  Google Scholar 

  80. Andersen, K. H. & Brander, K. Expected rate of fisheries-induced evolution is slow. Proc. Natl Acad. Sci. USA 106, 11657–11660 (2009).

    Article  PubMed  Google Scholar 

  81. Browman, H. I., Law, R. & Marshall, C. T. The role of fisheries-induced evolution. Science 320, 47–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. van Wijk, S. J. et al. Experimental harvesting of fish populations drives genetically based shifts in body size and maturation. Front. Ecol. Environ. 11, 181–187 (2013).

    Article  Google Scholar 

  83. Uusi-Heikkila, S. et al. The evolutionary legacy of size-selective harvesting extends from genes to populations. Evol. Appl. 8, 597–620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Christie, M. R., Marine, M. L., Fox, S. E., French, R. A. & Blouin, M. S. A single generation of domestication heritably alters the expression of hundreds of genes. Nat. Commun. 7, 10676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hansen, M. M., Olivieri, I., Waller, D. M., Nielsen, E. E. & The GeM Working Group. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 21, 1311–1329 (2012).

    Article  PubMed  Google Scholar 

  86. Therkildsen, N. O. et al. Microevolution in time and space: SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod. Mol. Ecol. 22, 2424–2440 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Fisher, M. A. & Oleksiak, M. F. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics 8, 1–10 (2007).

    Article  CAS  Google Scholar 

  88. Nacci, D. E., Champlin, D. & Jayaraman, S. Adaptation of the estuarine fish Fundulus heteroclitus (Atlantic killifish) to polychlorinated biphenyls (PCBs). Estuar. Coasts 33, 853–864 (2010).

    Article  CAS  Google Scholar 

  89. Williams, L. M. & Oleksiak, M. F. Signatures of selection in natural populations adapted to chronic pollution. BMC Evol. Biol. 8, 1–12 (2008).

    Article  CAS  Google Scholar 

  90. Cammen, K. M., Schultz, T. F., Rosel, P. E., Wells, R. S. & Read, A. J. Genomewide investigation of adaptation to harmful algal blooms in common bottlenose dolphins (Tursiops truncatus). Mol. Ecol. 24, 4697–4710 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Cammen, K. M., Wilcox, L. A., Rosel, P. E., Wells, R. S. & Read, A. J. From genome-wide to candidate gene: an investigation of variation at the major histocompatibility complex in common bottlenose dolphins exposed to harmful algal blooms. Immunogenetics 67, 125–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1677 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Bordenstein, S. R. & Theis, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13, e1002226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. El-Metwally, S., Hamza, T., Zakaria, M. & Helmy, M. Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput. Biol. 9, e1003345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Narum, S. R., Buerkle, C. A., Davey, J. W., Miller, M. R. & Hohenlohe, P. A. Genotyping-by-sequencing in ecological and conservation genomics. Mol. Ecol. 22, 2841–2847 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nelson, T. M., Rogers, T. L. & Brown, M. V. The gut bacterial community of mammals from marine and terrestrial habitats. PLoS ONE 8, e83655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sanders, J. G. et al. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat. Commun. 6, 8285 (2015). This study was one of the first to highlight that genomics can shed light on adaptations to the marine environment through shifts in the composition of the gut microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hemmer-Hansen, J. et al. A genomic island linked to ecotype divergence in Atlantic cod. Mol. Ecol. 22, 2653–2667 (2013).

    Article  PubMed  Google Scholar 

  101. Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).

    Article  PubMed  Google Scholar 

  102. Bierne, N., Welch, J., Loire, E., Bonhomme, F. & David, P. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20, 2044–2072 (2011).

    Article  PubMed  Google Scholar 

  103. Eldon, B. & Wakeley, J. Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172, 2621–2633 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, Z. & Bielawski, J. P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hudson, R. R., Kreitman, M. & Aguade, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Vitti, J. J., Grossman, S. R. & Sabeti, P. C. Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Cutter, A. D. & Payseur, B. A. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14, 262–274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maynard Smith, J. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    Article  Google Scholar 

  110. Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M. & Jensen, J. D. Thinking too positive? Revisiting current methods of population genetic selection inference. Trends Genet. 30, 540–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).

    Article  PubMed  Google Scholar 

  112. Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST . Am. Nat. 186, S24–S36 (2015).

    Article  PubMed  Google Scholar 

  113. Sivasundar, A. & Palumbi, S. R. Parallel amino acid replacements in the rhodopsins of the rockfishes (Sebastes spp.) associated with shifts in habitat depth. J. Evol. Biol. 23, 1159–1169 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Shum, P., Pampoulie, C., Sacchi, C. & Mariani, S. Divergence by depth in an oceanic fish. Peer J. 2, e525 (2014).

    Article  PubMed  Google Scholar 

  115. Shum, P., Pampoulie, C., Kristinsson, K. & Mariani, S. Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish. Mol. Ecol. 24, 3652–3667 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Schneider, I. & Shubin, N. H. The origin of the tetrapod limb: from expeditions to enhancers. Trends Genet. 29, 419–426 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.L.K. and A.P.B. were supported in part by a grant from the US Army Research Office (W911NF-15-1-0175). A.D.F. was supported by a short visit grant from the European Science Foundation–Research Networking Programme ConGenOmics and by a Swisss National Science Foundation grant (31003A-143393) to L. Excoffier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Foote.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Ensembl Genome Browser

PowerPoint slides

Glossary

Estuarine

An environment that is situated in the transition zone where the ocean meets rivers. One special challenge in this environment is that salt water from the ocean mixes with fresh water from a river, making this a unique environment in terms of salinity.

Coastal

An environment that is found near a shoreline and is shallower than most other marine environments; the substrates of the coast can vary considerably (sandy, rocky and so on).

Abyssal

An environment that is found in the deepest parts of the ocean. There is very little light and primary production, which makes it difficult for large predators to survive.

Macroevolution

Evolutionary patterns at or above the species level.

Microevolution

Evolutionary patterns at the population or subpopulation level.

Adaptation

The process by which populations become better at reproducing and surviving within a particular environment; this is a population-level process that typically involves changes in allele frequencies.

Effective population size

The number of breeding individuals within a population that contribute offspring to the next generation.

Clines

Gradients of environmental differences.

Cetaceans

A group that encompasses the fully aquatic marine mammals (including whales, dolphins and porpoises). The closest living terrestrial relative is the hippopotamus.

Pinniped

An organism that belongs to the group Pinnepedia, which encompasses all types of seals (including walruses, sea lions and fur seals). The closest living terrestrial relatives are bears.

Sirenian

An organism that belongs to the order Sirenia, which includes herbivorous marine mammals (such as dugongs and manatees). The closest living terrestrial relatives are elephants.

Pseudogenized

The process by which a functional gene becomes dysfunctional (a pseudogene) owing to sequence alterations such as premature stop codons. Pseudogenization during evolution often results in one species lineage harbouring the defective gene, whereas other species retain the functional homologue.

Otolith

A structure in the inner ear that helps marine vertebrates with balance and sound detection.

Pleiotropic

A phenomenon in which one gene has an effect on several, often seemingly unrelated, traits.

Benthic

The zone at the bottom of a body of water.

Euryhaline

Able to tolerate a wide range of salinity.

Synteny

The preserved order of genes on chromosomes of related species.

Panmixia

Random mating within a population.

Population structure

Differences in allele frequencies among subpopulations within a larger population, possibly due to different ancestry, inbreeding and so on.

Allozyme

Allelic variants of proteins detected by protein electrophoresis.

Standing genetic variation

Allelic variation that is currently segregating within a species, as opposed to alleles that arise through new mutations.

Selective sweeps

Processes by which new favourable mutations and physically linked alleles increase in frequency within a population owing to selection on the adaptive mutation, thereby reducing variation within a genomic region.

Genetic drift

A change in allele frequency due to random chance; small populations are especially susceptible to large changes in allele frequency resulting from genetic drift.

Identical-by-descent

Segments of DNA in multiple individuals that are derived from the same common ancestor.

Metagenomic analyses

Studies of DNA from multiple organisms that are found in environmental samples.

Hologenomes

The collective genomes of a host plus all of its symbiotic microbes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelley, J., Brown, A., Therkildsen, N. et al. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet 17, 523–534 (2016). https://doi.org/10.1038/nrg.2016.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.66

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing