Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The genetics of drug efficacy: opportunities and challenges

Key Points

  • To date, there have been at least 76 genome-wide association studies and a large number of candidate gene studies of drug efficacy. From these, there are at least 12 drugs with high-confidence genetic predictors of drug efficacy.

  • Genetic predictors of drug efficacy are mostly common variants with a range of effect sizes; most have been discovered through studies of sensitive quantitative measures of drug response, and all but one were discovered following drug approval.

  • Less than 20% of drugs are estimated to have common genetic predictors of efficacy that are large enough to inform clinical decision making.

  • There are limited scenarios in which genetics can 'rescue' a trial that fails owing to lack of efficacy. However, advances in genetic technologies can allow for cost-effective screening for genetic predictors with potential clinical utility during the course of clinical development.

  • Pharmaceutical and academic researchers should combine resources to study the efficacy pharmacogenetics of marketed drugs.

Abstract

Lack of sufficient efficacy is the most common cause of attrition in late-phase drug development. It has long been envisioned that genetics could drive stratified drug development by identifying those patient subgroups that are most likely to respond. However, this vision has not been realized as only a small proportion of drugs have been found to have germline genetic predictors of efficacy with clinically meaningful effects, and so far all but one were found after drug approval. With the exception of oncology, systematic application of efficacy pharmacogenetics has not been integrated into drug discovery and development across the industry. Here, we argue for routine, early and cumulative screening for genetic predictors of efficacy, as an integrated component of clinical trial analysis. Such a strategy would identify clinically relevant predictors that may exist at the earliest possible opportunity, allow these predictors to be integrated into subsequent clinical development and provide mechanistic insights into drug disposition and patient-specific factors that influence response, therefore paving the way towards more personalized medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect size of high-confidence efficacy pharmacogenetic effects relative to safety pharmacogenetic and non-pharmacogenetic associations.

References

  1. Motulsky, A. G. Drug reactions, enzymes, and biochemical genetics. JAMA 165, 835–837 (1957). This is a seminal publication establishing the field of pharmacogenetics, with studies of glucose-6-phosphate dehydrogenase (G6PD) deficiency and anaemia for oxidizing treatments (for example, antimalarials), and pseudocholinesterase deficiency on prolonged apnoea during anaesthesia.

    Article  CAS  Google Scholar 

  2. Ehmann, F. et al. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenom. J. 15, 201–210 (2015).

    Article  CAS  Google Scholar 

  3. PharmGKB. Dosing Guidelines. (online), (2015).

  4. Watson, J. D. & Zinder, N. Genome Project Maps Paths of Diseases and Drugs. New York Times [online], (1990).

    Google Scholar 

  5. Ioannidis, J. P. To replicate or not to replicate: the case of pharmacogenetic studies: have pharmacogenomics failed, or do they just need larger-scale evidence and more replication? Circ. Cardiovasc. Genet. 6, 413–418 (2013). In this paper, Ioannidis turns his attention to the field of pharmacogenetics and considers the challenge of replication.

    Article  PubMed  Google Scholar 

  6. Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A. & Contopoulos-Ioannidis, D. G. Replication validity of genetic association studies. Nat. Genet. 29, 306–309 (2001). This is an early demonstration of the stark lack of replicability among candidate gene association studies, identifying a serious problem for the field that led to substantial reforms in analysis and reporting.

    Article  CAS  PubMed  Google Scholar 

  7. Collins, S. L., Carr, D. F. & Pirmohamed, M. Advances in the pharmacogenomics of adverse drug reactions. Drug Safety 39, 15–27 (2016). This is a recent review of the substantial progress made in the study of the genetics of adverse drug reactions.

    Article  CAS  PubMed  Google Scholar 

  8. Ioannidis, J. P. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Colquhoun, D. An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open Sci. 1, 140216 (2014). This is a useful summary of why we are faced with high false discovery rates despite strict adherence to traditional P value thresholds for statistical significance.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pearson, E. R. et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362, 1275–1281 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Fedier, A. et al. The effect of loss of Brca1 on the sensitivity to anticancer agents in p53-deficient cells. Int. J. Oncol. 22, 1169–1173 (2003).

    CAS  PubMed  Google Scholar 

  13. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Bolton, K. L. et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307, 382–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alsop, K. et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 30, 2654–2663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 18, 521–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Pearson, E. R. et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med. 355, 467–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, F. et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 1 (2013).

  19. Deshmukh, H. A. et al. Genome-wide association study of genetic determinants of LDL-C response to atorvastatin therapy: importance of Lp(a). J. Lipid Res. 53, 1000–1011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donnelly, L. A. et al. Robust association of the LPA locus with low-density lipoprotein cholesterol lowering response to statin treatment in a meta-analysis of 30 467 individuals from both randomized control trials and observational studies and association with coronary artery disease outcome during statin treatment. Pharmacogenet. Genom. 23, 518–525 (2013).

    Article  CAS  Google Scholar 

  21. Murphy, R., Ellard, S. & Hattersley, A. T. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat. Clin. Pract. Endocrinol. Metab. 4, 200–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Pirmohamed, M. et al. A randomized trial of genotype-guided dosing of warfarin. N. Engl. J. Med. 369, 2294–2303 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Anderson, J. L. et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation 125, 1997–2005 (2012). References 22 and 23 represent two of the few examples of randomized controlled trials for genotype-guided effects on drug efficacy and safety.

    Article  CAS  PubMed  Google Scholar 

  24. Roberts, J. D. et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 379, 1705–1711 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Chhibber, A. et al. Genomic architecture of pharmacological efficacy and adverse events. Pharmacogenomics 15, 2025–2048 (2014). This is a recent review of the genetics of drug safety and efficacy, with particular attention to available estimates of heritability in humans and cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Chasman, D. I. et al. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ. Cardiovasc. Genet. 5, 257–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Ledermann, J. et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 15, 852–861 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Franc, M. A. et al. Current practices for DNA sample collection and storage in the pharmaceutical industry, and potential areas for harmonization: perspective of the I-PWG. Clin. Pharmacol. Ther. 89, 546–553 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Fleming, T. R. & Powers, J. H. Biomarkers and surrogate endpoints in clinical trials. Stat. Med. 31, 2973–2984 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zarogianni, E., Moorhead, T. W. & Lawrie, S. M. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin. 3, 279–289 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Greshock, J. et al. Molecular target class is predictive of in vitro response profile. Cancer Res. 70, 3677–3686 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Geeleher, P., Cox, N. J. & Huang, R. S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 15, R47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frantzi, M., Bhat, A. & Latosinska, A. Clinical proteomic biomarkers: relevant issues on study design and technical considerations in biomarker development. Clin. Transl Med. 3, 7 (2014). Although the primary focus is on proteomics, this paper provides a careful discussion of the challenges of discovering and applying clinical biomarkers.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Soininen, P., Kangas, A. J., Wurtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 8, 192–206 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kirchmair, J. et al. Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug Discov. 14, 387–404 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Carter, T. A. et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc. Natl Acad. Sci. USA 102, 11011–11016 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Davis, M. I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1046–1051 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Rannala, B. & Reeve, J. P. High-resolution multipoint linkage-disequilibrium mapping in the context of a human genome sequence. Am. J. Hum. Genet. 69, 159–178 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gagliano, S. A., Barnes, M. R., Weale, M. E. & Knight, J. A. Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization. PLoS ONE 9, e98122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stephens, M. & Balding, D. J. Bayesian statistical methods for genetic association studies. Nat. Rev. Genet. 10, 681–690 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Witte, J. S., Elston, R. C. & Cardon, L. R. On the relative sample size required for multiple comparisons. Stat. Med. 19, 369–372 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Cardon, L. R., Idury, R. M., Harris, T. J., Witte, J. S. & Elston, R. C. Testing drug response in the presence of genetic information: sampling issues for clinical trials. Pharmacogenetics 10, 503–510 (2000). This is an early, although still relevant, summary of the statistical modelling of drug efficacy effects.

    Article  CAS  PubMed  Google Scholar 

  46. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. (2015).

  47. Postmus, I. et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat. Commun. 5, 5068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klein, T. E. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Garcia-Donas, J. et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol. 12, 1143–1150 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. McCarty, C. A., Chapman-Stone, D., Derfus, T., Giampietro, P. F. & Fost, N. Community consultation and communication for a population-based DNA biobank: the Marshfield clinic personalized medicine research project. Am. J. Med. Genet. A 146A, 3026–3033 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin. Pharmacol. Ther. 84, 362–369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilke, R. A. et al. The emerging role of electronic medical records in pharmacogenomics. Clin. Pharmacol. Ther. 89, 379–386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Collins, R. What makes UK Biobank special? Lancet 379, 1173–1174 (2012).

    Article  PubMed  Google Scholar 

  54. Zhou, K. et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 43, 117–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Delaney, J. T. et al. Predicting clopidogrel response using DNA samples linked to an electronic health record. Clin. Pharmacol. Ther. 91, 257–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Wei, W. Q. et al. Characterization of statin dose response in electronic medical records. Clin. Pharmacol. Ther. 95, 331–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Province, M. A. et al. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations. Clin. Pharmacol. Ther. 95, 216–227 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Eddershaw, P. J., Beresford, A. P. & Bayliss, M. K. ADME/PK as part of a rational approach to drug discovery. Drug Discov. Today 5, 409–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Ma, M. K., Woo, M. H. & McLeod, H. L. Genetic basis of drug metabolism. Am. J. Health Syst. Pharm. 59, 2061–2069 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Aminkeng, F. et al. Higher frequency of genetic variants conferring increased risk for ADRs for commonly used drugs treating cancer, AIDS and tuberculosis in persons of African descent. Pharmacogenom. J. 14, 160–170 (2014).

    Article  CAS  Google Scholar 

  61. Altman, R. B., Flockhart, D. A. & Goldstein, J. L. (eds) Principles of Pharmacogenetics and Pharmacogenomics (Cambridge Univ. Press, 2012).

    Google Scholar 

  62. Gelissen, I. C. & McLachlan, A. J. The pharmacogenomics of statins. Pharmacol. Res. 88, 99–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Nieminen, T., Kahonen, M., Viiri, L. E., Gronroos, P. & Lehtimaki, T. Pharmacogenetics of apolipoprotein E gene during lipid-lowering therapy: lipid levels and prevention of coronary heart disease. Pharmacogenomics 9, 1475–1486 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Faber, A. C. et al. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov. 1, 352–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kjolby, M. et al. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell. Metab. 12, 213–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, K. et al. The role of ATM in response to metformin treatment and activation of AMPK. Nat. Genet. 44, 361–362 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Bossuyt, P. M., Reitsma, J. B., Linnet, K. & Moons, K. G. Beyond diagnostic accuracy: the clinical utility of diagnostic tests. Clin. Chem. 58, 1636–1643 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Mallal, S. et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 358, 568–579 (2008).

    Article  PubMed  Google Scholar 

  70. Zineh, I., Pacanowski, M. & Woodcock, J. Pharmacogenetics and coumarin dosing—recalibrating expectations. N. Engl. J. Med. 369, 2273–2275 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. The National Institute for Health and Care Excellence. Hypertension in adults: diagnosis and management. Clinical guideline CG127. NICE [online], (2011).

  72. Lango, A. H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  Google Scholar 

  73. Sanna, S. et al. Fine mapping of five loci associated with low-density lipoprotein cholesterol detects variants that double the explained heritability. PLoS. Genet. 7, e1002198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spraggs, C. F. et al. Different effects of the BIM deletion polymorphism on treatment of solid tumors by the tyrosine kinase inhibitors (TKI) pazopanib, sunitinib, and lapatinib. Ann. Oncol. 26, 1515–1517 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013). This is a clear explanation, with compelling examples, of the value of human genetic data to support decisions around selecting targets for drug discovery and development.

    Article  CAS  PubMed  Google Scholar 

  76. Xu, C. F. et al. IL8 polymorphisms and overall survival in pazopanib- or sunitinib-treated patients with renal cell carcinoma. Br. J. Cancer 112, 1190–1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, S. et al. Targeted blockade of interleukin-8 abrogates its promotion of cervical cancer growth and metastasis. Mol. Cell Biochem. 375, 69–79 (2013).

    CAS  PubMed  Google Scholar 

  78. Wadelius, M. et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenom. J. 5, 262–270 (2005).

    Article  CAS  Google Scholar 

  79. Takeuchi, F. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS. Genet. 5, e1000433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aithal, G. P., Day, C. P., Kesteven, P. J. & Daly, A. K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353, 717–719 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Perera, M. A. et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 382, 790–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brandt, J. T. et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J. Thromb. Haemost. 5, 2429–2436 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Shuldiner, A. R. et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302, 849–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eckhardt, K. et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 76, 27–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Nishimura, J. et al. Genetic variants in C5 and poor response to eculizumab. N. Engl. J. Med. 370, 632–639 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Ong, S. T., Chuah, C. T., Ko, T. K., Hillmer, A. M. & Lim, W. T. Reply: the BIM deletion polymorphism cannot account for intrinsic TKI resistance of Chinese individuals with chronic myeloid leukemia. Nat. Med. 20, 1090–1091 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Gorodnova, T. V. et al. High response rates to neoadjuvant platinum-based therapy in ovarian cancer patients carrying germ-line BRCA mutation. Cancer Lett. 369, 363–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Rafiq, M. et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 31, 204–209 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Ghosh, L. Hosking, C. Cox, S. Stinnett and three anonymous reviewers for valuable discussions and input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn M. Waterworth.

Ethics declarations

Competing interests

M.R.N., T.J., A.R.H., S.L.C., C.-F.X. and D.M.W. are all full-time employees of GlaxoSmithKline. L.W. is a former employee of GlaxoSmithKline.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

In format provided by Nelson et al. (April 2016); doi:10.1038/nrg.2016.12 (XLSX 19 kb)

Supplementary information S2 (figure)

Relationship between minor allele frequency and effect size to achieve statistical power to detect a pharmacogenetic effect. (PDF 236 kb)

Supplementary information S3 (table)

In format provided by Nelson et al. (April 2016); doi:10.1038/nrg.2016.12 (XLSX 9 kb)

Supplementary information S4 (table)

In format provided by Nelson et al. (April 2016); doi:10.1038/nrg.2016.12 (XLSX 93 kb)

Supplementary information S5 (figure)

GWAS statistical power (alpha = 5 × 10−8) for efficacy pharmacogenetics based on a range of potential trial outcomes. Power to detect association with time to event efficacy outcome. (PDF 151 kb)

Glossary

Companion diagnostics

Diagnostic tests used to determine the applicability of a therapeutic drug to a specific patient.

Pharmacokinetics

The branch of pharmacology concerned with the movement of drugs within the patient's body.

Drug efficacy

The ability of a drug to achieve the desired effect.

Biomarkers

Measurable indicators of a given biological state or condition.

Prognostic effects

Effects that may be independent of the drug or treatment received.

Predictive effects

Effects that depend on the drug or treatment received, and therefore predict which patients are most likely to respond.

Clinical Pharmacogenetics Implementation Consortium

(CPIC). A shared project between the Pharmacogenomics Knowledge Base (PharmGKB) and the Pharmacogenomics Research Network, whose goal is to address some of the barriers to the implementation of pharmacogenetic tests into clinical practice.

Pharmacogenomics Knowledge Base

(PharmGKB). A database of comprehensively collected information about genes and response to drugs and/or disease.

Eculizumab

(Soliris; Alexion Pharmaceuticals). A humanized monoclonal antibody that is a terminal complement inhibitor and the first agent approved for the treatment of atypical haemolytic uraemic syndrome.

Statins

A class of cholesterol-lowering drugs that inhibit the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).

Poly(ADP-ribose) polymerase 1

(PARP1). An enzyme involved in DNA repair. A PARP1 inhibitor, olaparib (Lynparza; AstraZeneca), is an approved targeted therapy for ovarian cancer.

Sulfonylureas

Widely used anti-diabetic drugs that act by increasing insulin release from the β-cells in the pancreas.

Clinical end point

The occurrence of a disease or symptom that constitutes one of the target outcomes of a clinical trial.

Pharmacodynamic

Relating to the mechanism of action of a drug and its effects on the patient.

Surrogate end point

A biomarker intended to substitute for a clinical end point.

Primary end point

The measure for which subjects are randomized and for which a clinical trial is powered, and which determines primary success or failure of the trial.

BRACAnalysis CDx

An FDA (US Food and Drug Administration)-approved companion diagnostic test for breast cancer 1 (BRCA1) and BRCA2 that is intended to be used as an aid in treatment decision making for olaparib (Lynparza; AstraZeneca), a PARP1 inhibitor.

Bayesian prior

A prior belief that is incorporated into a probability distribution before specific evidence is taken into account.

Alpha allocation

A strategy for performing analyses that outlines the false-positive rate that will be used for each analysis to achieve an overall desired false-positive rate (for example, 0.05).

Bonferroni principle

A statistical approach that controls for multiple testing.

Biobanks

Biorepositories that store human samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, M., Johnson, T., Warren, L. et al. The genetics of drug efficacy: opportunities and challenges. Nat Rev Genet 17, 197–206 (2016). https://doi.org/10.1038/nrg.2016.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing