Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomes by design

Key Points

  • Improvements in DNA-editing technologies have enabled engineering of microorganisms at the gene, network and genome level, helping to elucidate causal links between genotypes and phenotypes, and facilitating the targeted exploration of complex phenotype landscapes.

  • DNA sequencing and genome engineering are synergistic technologies: understanding genetic and phenotypic diversity establishes a platform for pursuing many goals in biological design.

  • Multiplex genome modification techniques have enabled combinatoric genomic variations across populations, exploring large numbers of genotype–phenotype landscapes in living cells.

  • The combination of DNA synthesis and in vivo genome editing establishes the ability to fundamentally redesign systems from refactored pathways to whole-genome recoding.

  • The future of genome editing will require the combination of de novo synthesis and in vivo genome evolution integrated with functional screens and selections to isolate variants exhibiting a desired phenotype.

Abstract

Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genes, networks and genomes by design.
Figure 2: Nuclease-mediated genome engineering.
Figure 3: Gene and network-scale recombineering.
Figure 4: Refactored pathways and minimal genomes.
Figure 5: Genome recoding and new biological functions.
Figure 6: Design principles and assembly: synthetic yeast genome project.

Similar content being viewed by others

References

  1. Johnson, A. The Hidden Writer (Random House, 1997).

    Google Scholar 

  2. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    CAS  PubMed  Google Scholar 

  3. Loenen, W. A., Dryden, D. T., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    CAS  Google Scholar 

  4. Simon, R., Priefer, U. & Puhler, A. A. Broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1, 784–791 (1983).

    CAS  Google Scholar 

  5. Renda, B. A., Hammerling, M. J. & Barrick, J. E. Engineering reduced evolutionary potential for synthetic biology. Mol. Biosyst. 10, 1668–1678 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pal, C., Papp, B. & Posfai, G. The dawn of evolutionary genome engineering. Nat. Rev. Genet. 15, 504–512 (2014).

    CAS  PubMed  Google Scholar 

  7. Desai, M. M., Fisher, D. S. & Murray, A. W. The speed of evolution and maintenance of variation in asexual populations. Curr. Biol. 17, 385–394 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Silver, P. A., Way, J. C., Arnold, F. H. & Meyerowitz, J. T. Synthetic biology: engineering explored. Nature 509, 166–167 (2014).

    CAS  PubMed  Google Scholar 

  9. Neylon, C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res. 32, 1448–1459 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bunge, J., Willis, A. & Walsh, F. Estimating the number of species in microbial diversity studies. Annu. Rev. Stat. Appl. 1, 427–445 (2014).

    Google Scholar 

  11. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    CAS  PubMed  Google Scholar 

  12. Stemmer, W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    CAS  PubMed  Google Scholar 

  13. Jackel, C., Kast, P. & Hilvert, D. Protein design by directed evolution. Annu. Rev. Biophys. 37, 153–173 (2008).

    CAS  PubMed  Google Scholar 

  14. Das, R. & Baker, D. Macromolecular modeling with Rosetta. Annu. Rev. Biochem. 77, 363–382 (2008).

    CAS  PubMed  Google Scholar 

  15. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011). This paper describes a mutagenesis and selection system that links a desired function to viral fitness and enables the continuous, directed evolution of proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fijalkowska, I. J. & Schaaper, R. M. Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. Proc. Natl Acad. Sci. USA 93, 2856–2861 (1996).

    CAS  PubMed  Google Scholar 

  17. Opperman, T., Murli, S., Smith, B. T. & Walker, G. C. A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proc. Natl Acad. Sci. USA 96, 9218–9223 (1999).

    CAS  PubMed  Google Scholar 

  18. Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sorensen, S. J., Bailey, M., Hansen, L. H., Kroer, N. & Wuertz, S. Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3, 700–710 (2005).

    CAS  PubMed  Google Scholar 

  20. Bouma, J. E. & Lenski, R. E. Evolution of a bacteria/plasmid association. Nature 335, 351–352 (1988).

    CAS  PubMed  Google Scholar 

  21. Betenbaugh, M. J., Beaty, C. & Dhurjati, P. Effects of plasmid amplification and recombinant gene expression on the growth kinetics of recombinant E. coli. Biotechnol. Bioengineer. 33, 1425–1436 (1989).

    CAS  Google Scholar 

  22. Gersbach, C. A. Genome engineering: the next genomic revolution. Nat. Methods 11, 1009–1011 (2014).

    CAS  PubMed  Google Scholar 

  23. Gaj, T., Gersbach, C. A. & Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    CAS  PubMed  Google Scholar 

  25. Miller, J. C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    CAS  PubMed  Google Scholar 

  26. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  27. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). This seminal paper uncovers the Cas9 endonuclease guided by dual RNAs for site-specific DNA cleavage and presents the use of a single chimeric RNA for programming.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    CAS  PubMed  Google Scholar 

  29. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gantz, V. M. & Bier, E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. & Church, G. M. RNA-guided gene drives efficiently reversibly bias inheritance wild yeast. BioRxiv http://dx.doi.org/10.1101/013896 (2015).

  41. Ryan, O. W. et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife 3, e03703 (2014).

    PubMed Central  Google Scholar 

  42. Kabadi, A. M., Ousterout, D. G., Hilton, I. B. & Gersbach, C. A. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42, e147 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    CAS  PubMed  Google Scholar 

  44. Costantino, N. & Court, D. L. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc. Natl Acad. Sci. USA 100, 15748–15753 (2003).

    CAS  PubMed  Google Scholar 

  45. Court, D. L., Sawitzke, J. A. & Thomason, L. C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    CAS  PubMed  Google Scholar 

  46. Binder, S., Siedler, S., Marienhagen, J., Bott, M. & Eggeling, L. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res. 41, 6360–6369 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y. et al. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res. 40, e91 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sawitzke, J. A. et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol. 421, 171–199 (2007).

    CAS  PubMed  Google Scholar 

  49. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014). This work describes the generation of target mutations through the in vivo production of ssDNA and co-expression of recombineering machinery. The accumulation of these mutations in the population in response to various input signals acts as a genetic memory device.

    PubMed  PubMed Central  Google Scholar 

  51. Brakmann, S. & Grzeszik, S. An error-prone T7 RNA polymerase mutant generated by directed evolution. ChemBioChem 2, 212–219 (2001).

    CAS  PubMed  Google Scholar 

  52. Bebenek, K., Abbotts, J., Wilson, S. H. & Kunkel, T. A. Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J. Biol. Chem. 268, 10324–10334 (1993).

    CAS  PubMed  Google Scholar 

  53. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009). This paper describes the use of efficient oligonucleotide-mediated recombineering to create targeted, multi-site diversity across the E. coli genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9, 2301–2316 (2014).

    CAS  PubMed  Google Scholar 

  55. Gregg, C. J. et al. Rational optimization of tolC as a powerful dual selectable marker for genome engineering. Nucleic Acids Res. 42, 4779–4790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Carr, P. A. et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res. 40, e132 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, H. H. et al. Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9, 591–593 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Bonde, M. T. et al. Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. ACS Synth. Biol. 4, 17–22 (2015).

    CAS  PubMed  Google Scholar 

  59. Mansell, T. J., Warner, J. R. & Gill, R. T. Trackable multiplex recombineering for gene-trait mapping in E. coli. Methods Mol. Biol. 985, 223–246 (2013).

    CAS  PubMed  Google Scholar 

  60. Warner, J. R., Reeder, P. J., Karimpour-Fard, A., Woodruff, L. B. & Gill, R. T. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat. Biotechnol. 28, 856–862 (2010).

    CAS  PubMed  Google Scholar 

  61. DiCarlo, J. E. et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2, 741–749 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pines, G., Freed, E. F., Winkler, J. D. & Gill, R. T. Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth. Biol. http://dx.doi.org/10.1021/acssynbio.5b00009 (2015).

  63. Wang, H. H., Xu, G., Vonner, A. J. & Church, G. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res. 39, 7336–7347 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    CAS  PubMed  Google Scholar 

  65. Kodumal, S. J. et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl Acad. Sci. USA 101, 15573–15578 (2004).

    CAS  PubMed  Google Scholar 

  66. Huang, J., Koide, A., Makabe, K. & Koide, S. Design of protein function leaps by directed domain interface evolution. Proc. Natl Acad. Sci. USA 105, 6578–6583 (2008).

    CAS  PubMed  Google Scholar 

  67. Temme, K., Zhao, D. & Voigt, C. A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl Acad. Sci. USA 109, 7085–7090 (2012). In this study, the essential genes in a heterologous biosynthetic pathway are identified, removed from their native context, and placed under well-characterized regulatory elements to facilitate more predictable pathway engineering.

    PubMed  Google Scholar 

  68. Chan, L. Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005.0018 (2005).

    PubMed  PubMed Central  Google Scholar 

  69. Smanski, M. J. et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat. Biotechnol. 32, 1241–1249 (2014).

    CAS  PubMed  Google Scholar 

  70. Horwitz, A. A. et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. http://dx.doi.org/10.1016/j.cels.2015.02.001 (2015).

  71. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    CAS  PubMed  Google Scholar 

  72. Isaacs, F. J., Dwyer, D. J. & Collins, J. J. RNA synthetic biology. Nat. Biotechnol. 24, 545–554 (2006).

    CAS  PubMed  Google Scholar 

  73. Na, D. et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31, 170–174 (2013).

    CAS  PubMed  Google Scholar 

  74. Bayer, T. S. & Smolke, C. D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337–343 (2005).

    CAS  PubMed  Google Scholar 

  75. Qi, L. S. & Arkin, A. P. A versatile framework for microbial engineering using synthetic non-coding RNAs. Nat. Rev. Microbiol. 12, 341–354 (2014).

    CAS  PubMed  Google Scholar 

  76. Drinnenberg, I. A. et al. RNAi in budding yeast. Science 326, 544–550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Crook, N. C., Schmitz, A. C. & Alper, H. S. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synth. Biol. 3, 307–313 (2014).

    CAS  PubMed  Google Scholar 

  78. Hutchison, C. A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).

    CAS  PubMed  Google Scholar 

  79. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010). This work describes the creation of a synthetic genome from synthesized DNA fragments using a combination of in vitro assembly, propagation in E. coli and recombination cloning in S. cerevisiae . The resultant genome was successfully transplanted into a recipient cell to generate a cell run by the synthetic genome.

    CAS  PubMed  Google Scholar 

  80. Bornscheuer, U. T. & Pohl, M. Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biol. 5, 137–143 (2001).

    CAS  PubMed  Google Scholar 

  81. Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475–479 (2013).

    CAS  PubMed  Google Scholar 

  82. Posfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006). This study uses recombination and selection methods to remove parts of the E. coli genome in a targeted and planned manner, and evaluates the resultant phenotypes of E. coli with reduced genomes.

    CAS  PubMed  Google Scholar 

  83. Lartigue, C. et al. Genome transplantation in bacteria: changing one species to another. Science 317, 632–638 (2007).

    CAS  PubMed  Google Scholar 

  84. Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS ONE 6, e20161 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bock, A. et al. Selenocysteine: the 21st amino acid. Mol. Microbiol. 5, 515–520 (1991).

    CAS  PubMed  Google Scholar 

  86. Srinivasan, G., James, C. M. & Krzycki, J. A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).

    CAS  PubMed  Google Scholar 

  87. Ambrogelly, A., Palioura, S. & Soll, D. Natural expansion of the genetic code. Nat. Chem. Biol. 3, 29–35 (2007).

    CAS  PubMed  Google Scholar 

  88. Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. & Schultz, P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188 (1989).

    CAS  PubMed  Google Scholar 

  89. van Hest, J. C. M., Kiick, K. L. & Tirrell, D. A. Efficient incorporation of unsaturated methionine analogues into proteins in vivo. J. Am. Chem. Soc. 122, 1282–1288 (2000).

    CAS  Google Scholar 

  90. Chin, J. W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    CAS  PubMed  Google Scholar 

  91. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    CAS  PubMed  Google Scholar 

  92. Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001). This paper describes the development of an OTS that is capable of site-specifically incorporating a nsAA into proteins in E. coli.

    CAS  PubMed  Google Scholar 

  93. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010).

    CAS  PubMed  Google Scholar 

  94. Anderson, J. C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl Acad. Sci. USA 101, 7566–7571 (2004).

    CAS  PubMed  Google Scholar 

  95. O'Donoghue, P., Ling, J., Wang, Y. S. & Soll, D. Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 9, 594–598 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Park, H. S. et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333, 1151–1154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Heinemann, I. U. et al. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion. FEBS Lett. 586, 3716–3722 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Johnson, D. B. et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat. Chem. Biol. 7, 779–786 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Johnson, D. B. et al. Release factor one is nonessential in Escherichia coli. ACS Chem. Biol. 7, 1337–1344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mukai, T. et al. Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res. 38, 8188–8195 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Isaacs, F. J. et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353 (2011). References 101 and 102 describe genome engineering technologies and the construction of a recoded strain of E. coli (that is, a GRO) in which all TAG codons have been converted to TAA.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Annaluru, N. et al. Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55–58 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dymond, J. S. et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476 (2011). This study describes the design and construction of partially synthetic yeast chromosomes that incorporate multiple design features aimed at improving the ease of future evolution and engineering.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma, N. J., Moonan, D. W. & Isaacs, F. J. Precise manipulation of bacterial chromosomes by conjugative assembly genome engineering. Nat. Protoc. 9, 2285–2300 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lajoie, M. J. et al. Probing the limits of genetic recoding in essential genes. Science 342, 361–363 (2013).

    CAS  PubMed  Google Scholar 

  107. Ivanova, N. N. et al. Stop codon reassignments in the wild. Science 344, 909–913 (2014).

    CAS  PubMed  Google Scholar 

  108. Hammerling, M. J. et al. Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness. Nat. Chem. Biol. 10, 178–180 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Umehara, T. et al. N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo. FEBS Lett. 586, 729–733 (2012).

    CAS  PubMed  Google Scholar 

  112. Ling, J., Reynolds, N. & Ibba, M. Aminoacyl-tRNA synthesis and translational quality control. Annu. Rev. Microbiol. 63, 61–78 (2009).

    CAS  PubMed  Google Scholar 

  113. Tanrikulu, I. C. et al. Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo. Proc. Natl Acad. Sci. USA 106, 15285–15290 (2009).

    CAS  PubMed  Google Scholar 

  114. Hoess, R. H., Wierzbicki, A. & Abremski, K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res. 14, 2287–2300 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Enyeart, P. J. et al. Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol. Syst. Biol. 9, 685 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dymond, J. S. et al. Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course. Genetics 181, 13–21 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fischer, S. R. History of Writing (Reaktion Books Ltd, 2001).

    Google Scholar 

  118. Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012).

    CAS  PubMed  Google Scholar 

  119. Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Martin, C. H., Nielsen, D. R., Solomon, K. V. & Prather, K. L. Synthetic metabolism: engineering biology at the protein and pathway scales. Chem. Biol. 16, 277–286 (2009).

    CAS  PubMed  Google Scholar 

  121. Mattanovich, D. & Borth, N. Applications of cell sorting in biotechnology. Microb. Cell Fact. 5, 12 (2006).

    PubMed  PubMed Central  Google Scholar 

  122. Raman, S., Rogers, J. K., Taylor, N. D. & Church, G. M. Evolution-guided optimization of biosynthetic pathways. Proc. Natl Acad. Sci. USA 111, 17803–17808 (2014).

    CAS  PubMed  Google Scholar 

  123. Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    CAS  PubMed  Google Scholar 

  124. Zhang, F. & Keasling, J. Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 19, 323–329 (2011).

    CAS  PubMed  Google Scholar 

  125. Auslander, S. et al. A general design strategy for protein-responsive riboswitches in mammalian cells. Nat. Methods 11, 1154–1160 (2014).

    CAS  PubMed  Google Scholar 

  126. Breaker, R. R. Prospects for riboswitch discovery and analysis. Mol. Cell 43, 867–879 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mitchell, L. A. et al. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkv466 (2015).

  128. Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

    CAS  PubMed  Google Scholar 

  129. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    CAS  PubMed  Google Scholar 

  130. Roy, S. & Caruthers, M. Synthesis of DNA/RNA and their analogs via phosphoramidite and H-phosphonate chemistries. Molecules 18, 14268–14284 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004). In this paper, array-based DNA synthesis, oligonucleotide selection, and assembly are described. These processes enable parallel gene synthesis.

    CAS  PubMed  Google Scholar 

  132. Cleary, M. A. et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nat. Methods 1, 241–248 (2004).

    CAS  PubMed  Google Scholar 

  133. Kosuri, S. et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol. 28, 1295–1299 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Quan, J. et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nature Biotechnol. 29, 449–452 (2011).

    CAS  Google Scholar 

  135. Heller, M. J. DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4, 129–153 (2002).

    CAS  PubMed  Google Scholar 

  136. Stemmer, W. P., Crameri, A., Ha, K. D., Brennan, T. M. & Heyneker, H. L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    CAS  PubMed  Google Scholar 

  137. Bang, D. & Church, G. M. Gene synthesis by circular assembly amplification. Nat. Methods 5, 37–39 (2008).

    CAS  PubMed  Google Scholar 

  138. Gibson, D. G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res. 37, 6984–6990 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS  PubMed  Google Scholar 

  140. Itaya, M., Tsuge, K., Koizumi, M. & Fujita, K. Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc. Natl Acad. Sci. USA 102, 15971–15976 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Lajoie, the Isaacs laboratory and the anonymous reviewers for helpful comments on this paper. A.D.H. acknowledges support from US National Cancer Institute (NCI) award 1F30CA196191-01. P.M. is supported by the Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences. F.J.I. gratefully acknowledges support from the US Defense Advanced Research Projects Agency (N66001-12-C-4020, N66001-12-C-4211); US Department of Energy (152339.5055249.100); Gen9 Inc., DuPont Inc., and the Arnold and Mabel Beckman Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farren J. Isaacs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Directed evolution

A process that utilizes mutagenesis and a user-defined selective pressure to develop populations that are enriched for mutants exhibiting a desired function or behaviour.

Nuclease-based genome editing

The use of engineered nucleases with a DNA-targeting mechanism (for example, a zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) or a clustered regularly interspaced short palindromic repeat (CRISPR)) for targeted mutagenesis in vivo.

CRISPR–Cas

A bacterial adaptive immune system comprising clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) endonucleases that has been repurposed for genome editing.

Recombineering

(Recombination-mediated genetic engineering). A technique that utilizes homologous recombination to alter genetic loci using synthetic single-stranded DNA and double-stranded DNA.

Bioprospecting

Searching and sourcing useful genes from other organisms to specifically confer a desired phenotype (for example, medically or industrially relevant pathways and small molecules).

Refactoring

Reorganization of biological systems or pathways with the goal of improving the ease and predictability of future engineering efforts. This often entails the removal of native regulation, separation of overlapping genetic elements and the use of well-characterized regulatory elements.

Codon optimization

A multifactorial process that utilizes synonymous codons to reflect the preferred codon frequency in order to optimize protein expression in a target species.

Gene synthesis

De novo construction of user-defined double-stranded DNA.

Genetic code expansion

Modification of the genetic code to enable site-directed incorporation of amino acids beyond the canonical 20 into proteins.

Non-standard amino acid

(nsAA). An amino acid beyond the canonical 20 present in the genetic code. nsAAs generally fall into two classes: post-translational modifications (for example, phosphoserine); and synthetic amino acids that do not exist in nature.

Orthogonal translation systems

(OTSs). Used in genetic code expansion to link incorporation of a non-standard amino acid (nsAA) to a target codon. These systems are composed of a tRNA that is selectively charged with a given nsAA by a cognate aminoacyl-tRNA synthetase (aaRS). Other possible components of OTSs include mutant elongation factor Tu and ribosomes designed to accommodate the given nsAA.

Genomically recoded organism

(GRO). An organism in which codons have been reassigned to create an alternate genetic code. For example, an Escherichia coli strain in which all instances of the TAG stop codon have been mutated to TAA and release factor 1 (RF1) has been deleted, enabling the use of TAG as an open coding channel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haimovich, A., Muir, P. & Isaacs, F. Genomes by design. Nat Rev Genet 16, 501–516 (2015). https://doi.org/10.1038/nrg3956

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3956

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research