Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Competition between target sites of regulators shapes post-transcriptional gene regulation

Key Points

  • Post-transcriptional regulators of gene regulation, such as RNA-binding proteins (RBPs) and microRNAs (miRNAs), often have many thousands of binding sites in the transcriptome. Transcription renders the concentrations of these binding sites highly dynamic.

  • To understand their function, we consider how binding site occupancy is determined by the composition of the transcriptome and by the regulator concentration in a simple steady-state model.

  • Competition between many binding sites prevents saturation. This buffering helps to explain how changes in the expression of an RBP or a miRNA can regulate targets with different affinities inside a cell.

  • Expression of many strong binding sites can reduce occupancies by sequestration (that is, the 'sponge' effect). However, the larger the number of competing binding sites, the weaker the crosstalk between individual transcripts.

  • A sponge requires approximately double the number of binding sites in order to be effective. For miRNAs this requires tens of thousands of additional binding sites, which is unlikely for typical mRNAs.

  • Crosstalk between mRNAs could be enhanced if local concentrations deviate strongly from the average or if multiple sites cooperate.

Abstract

Post-transcriptional gene regulation (PTGR) of mRNA turnover, localization and translation is mediated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). These regulators exert their effects by binding to specific sequences within their target mRNAs. Increasing evidence suggests that competition for binding is a fundamental principle of PTGR. Not only can miRNAs be sequestered and neutralized by the targets with which they interact through a process termed 'sponging', but competition between binding sites on different RNAs may also lead to regulatory crosstalk between transcripts. Here, we quantitatively model competition effects under physiological conditions and review the role of endogenous sponges for PTGR in light of the key features that emerge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RBPs and miRNAs regulate protein output and mRNA fate.
Figure 2: RNA competition.
Figure 3: Steady-state model of the transcriptome to study RNA competition effects.
Figure 4: Quantitative modelling of competition effects for miR-20a binding.
Figure 5: An overview of competition effects.

Similar content being viewed by others

References

  1. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Google Scholar 

  2. Rajewsky, N. MicroRNAs and the operon paper. J. Mol. Biol. 409, 70–75 (2011).

    CAS  PubMed  Google Scholar 

  3. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    CAS  PubMed  Google Scholar 

  5. Rajewsky, N. microRNA target predictions in animals. Nature Genet. 38, S8–S13 (2006).

    CAS  PubMed  Google Scholar 

  6. Bushati, N. & Cohen, S. M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    CAS  PubMed  Google Scholar 

  7. Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    CAS  PubMed  Google Scholar 

  8. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    CAS  PubMed  Google Scholar 

  9. Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lukong, K. E., Chang, K., Khandjian, E. W. & Richard, S. RNA-binding proteins in human genetic disease. Trends Genet. 24, 416–425 (2008).

    CAS  PubMed  Google Scholar 

  11. Darnell, R. B. RNA protein interaction in neurons. Annu. Rev. Neurosci. 36, 243–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D. & Brown, P. O. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6, e255 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human transcription factors: function, expression and evolution. Nature Rev. Genet. 10, 252–263 (2009).

    CAS  PubMed  Google Scholar 

  14. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nature Rev. Genet. 8, 533–543 (2007).

    CAS  PubMed  Google Scholar 

  15. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033–1037 (2007). This paper is the first to describe an endogenous transcript ( IPS1 ) that can titrate a plant miRNA, leading to derepression of the targets of the miRNA. The miRNA binding sites on IPS1 differ from normal miRNA sites in plants and are thus termed 'mimics'.

    CAS  PubMed  Google Scholar 

  16. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721–726 (2007). In this study, artificial, highly expressed transcripts harbouring multiple miRNA binding sites are shown to inhibit miRNA function by sequestration in animal cells. Owing to the many binding sites in their constructs, the authors refer to them as miRNA sponges.

    CAS  PubMed  Google Scholar 

  17. Cazalla, D., Yario, T. & Steitz, J. A. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010). This study describes a naturally occurring, viral transcript that is capable of substantially destabilizing miR-27 in animal host cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ala, U. et al. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl Acad. Sci. 110, 7154–7159 (2013).

    CAS  PubMed  Google Scholar 

  19. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic Press, 2006).

    Google Scholar 

  20. Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry. Part III. The Behavior of Biological Macromolecules (W. H. Freeman, 1980).

    Google Scholar 

  21. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden, RNA language? Cell 146, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gross., P. R. & Cousineau G. H. Effects of actinomycin D on macromolecule synthesis and early development in sea urchin eggs. Biochem. Biophys. Res. Commun. 10, 321–326 (1963).

    CAS  PubMed  Google Scholar 

  23. Evsikov, A. V. & Marin de Evsikova, C. Gene expression during the oocyte-to-embryo transition in mammals. Mol. Reprod. Dev. 76, 805–818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Davidson, E. H. Gene Activity in Early Development (Elsevier, 2012).

    Google Scholar 

  25. Stoeckius, M. et al. Global characterization of the oocute-to-embryo transition in C. elegans uncovers a novel mRNA clearance mechanism. EMBO J. 33, 1751–1766 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Voronina, E., Seydoux, G., Sassone-Corsi, P. & Nagamori, I. RNA granules in germ cells. Cold Spring Harb. Perspect. Biol. 3, a002774 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    CAS  PubMed  Google Scholar 

  28. Marinov, G. K. et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24, 496–510 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods 5, 621–628 (2008).

    CAS  PubMed  Google Scholar 

  31. Darnell, R. B. HITS-CLIP: panoramic views of protein–RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266–286 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Milek, M., Wyler, E. & Landthaler, M. Transcriptome-wide analysis of protein–RNA interactions using high-throughput sequencing. Semin. Cell Dev. Biol. 23, 206–212 (2012).

    CAS  PubMed  Google Scholar 

  33. Ascano, M., Hafner, M., Cekan, P., Gerstberger, S. & Tuschl, T. Identification of RNA–protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev. RNA 3, 159–177 (2012).

    CAS  PubMed  Google Scholar 

  34. König, J., Zarnack, K., Luscombe, N. M. & Ule, J. Protein–RNA interactions: new genomic technologies and perspectives. Nature Rev. Genet. 13, 77–83 (2011).

    Google Scholar 

  35. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    CAS  PubMed  Google Scholar 

  36. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature Struct. Mol. Biol. 17, 909–915 (2010).

    Google Scholar 

  38. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nature Rev. Mol. Cell. Biol. 8, 479–490 (2007).

    CAS  Google Scholar 

  40. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013). This compendium of sequence motifs of animal RBPs is a valuable resource to model PTGR.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067 (2012). In this study, guide-RNA loaded AGO are purified and subjected to rigorous biochemical analysis. It represents a breakthrough in quantifying how siRNAs and miRNAs interact with transcripts.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460, 479–486 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kishore, S. et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nature Methods 8, 559–564 (2011).

    CAS  PubMed  Google Scholar 

  44. Loeb, G. B. et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell 48, 760–770 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS  PubMed  Google Scholar 

  46. Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl Acad. Sci. USA 108, 10010–10015 (2011).

    CAS  PubMed  Google Scholar 

  47. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grosswendt, S. et al. Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol. Cell 54, 1042–1054 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014). In this experimental test of the ceRNA hypothesis, the researchers show that the exceptionally highly expressed miR-122 in hepatocytes cannot mediate crosstalk between transcripts except at extremely high expression levels, which double the number of miR-122 binding sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  51. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    CAS  PubMed  Google Scholar 

  52. Moran, Y. et al. Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 24, 651–663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nature Rev. Genet. 15, 293–306 (2014).

    CAS  PubMed  Google Scholar 

  54. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nature Cell Biol. 12, 1014–1020 (2010).

    CAS  PubMed  Google Scholar 

  55. Braun, J. E., Huntzinger, E. & Izaurralde, E. A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harb. Perspect. Biol. 4, a012328 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. Martin, K. C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    PubMed  Google Scholar 

  58. Moran, U., Phillips, R. & Milo, R. SnapShot: key numbers in biology. Cell 141, 1262–1262. e1 (2010).

    PubMed  Google Scholar 

  59. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  PubMed  Google Scholar 

  61. Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43, 340–352 (2011).

    CAS  PubMed  Google Scholar 

  62. Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Graf, R. et al. Identification of LIN28B-bound mRNAs reveals features of target recognition and regulation. RNA Biol. 10, 1146–1159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hafner, M. et al. Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA 19, 613–626 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Castello, A., Fischer, B., Hentze, M. W. & Preiss, T. RNA-binding proteins in Mendelian disease. Trends Genet. 29, 318–327 (2013).

    CAS  PubMed  Google Scholar 

  66. Wright, J. E. et al. A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1. EMBO J. 30, 533–545 (2011).

    CAS  PubMed  Google Scholar 

  67. Jungkamp, A.-C. et al. In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol. Cell 44, 828–840 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiao, C. et al. miR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007). This study combines loss- and gain-of-function gene targeting experiments in mice. The authors show that miR-150 directly controls c-Myb expression in a dose-dependent manner over a narrow range of miRNA and c-Myb concentrations. miR-150 can trigger a developmental switch by repressing a transcription factor (c-Myb) by merely 30%. Multiple conserved binding sites for miR-150 in the 3′UTR of c-Myb are required for this switch.

    CAS  PubMed  Google Scholar 

  70. Didiano, D., Cochella, L., Tursun, B. & Hobert, O. Neuron-type specific regulation of a 3′UTR through redundant and combinatorially acting cis-regulatory elements. RNA 16, 349–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Oldenbroek, M. et al. Regulation of maternal Wnt mRNA translation in C. elegans embryos. Development 140, 4614–4623 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lambert, N. et al. RNA bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell 54, 887–900 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ray, D. et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nature Biotech. 27, 667–670 (2009).

    CAS  Google Scholar 

  74. Soltani, M. et al. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nature Nanotechnol. 9, 448–452 (2014).

    CAS  Google Scholar 

  75. Jens, M. Dissecting Regulatory Interactions of RNA and Protein — Combining Computation and High-throughput Experiments in Systems Biology (Springer Theses, 2014).

    Google Scholar 

  76. Anders, G. et al. doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res. 40, D180–D186 (2012).

    CAS  PubMed  Google Scholar 

  77. Mullokandov, G. et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nature Methods 9, 840–846 (2012). This study uses a library of plasmids with reporter constructs, combined with fluorescence-activated cell sorting, to assess the repressive activity of all expressed miRNAs in cells by high-throughput sequencing.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005).

    CAS  PubMed  Google Scholar 

  79. Lall, S. et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr. Biol. 16, 460–471 (2006).

    CAS  PubMed  Google Scholar 

  80. Buchler, N. E. & Louis, M. Molecular titration and ultrasensitivity in regulatory networks. J. Mol. Biol. 384, 1106–1119 (2008).

    CAS  PubMed  Google Scholar 

  81. Mukherji, S. et al. MicroRNAs can generate thresholds in target gene expression. Nature Genet. 43, 854–859 (2011).

    CAS  PubMed  Google Scholar 

  82. Sood, P., Krek, A., Zavolan, M., Macino, G. & Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl Acad. Sci. USA 103, 2746–2751 (2006).

    CAS  PubMed  Google Scholar 

  83. Arvey, A., Larsson, E., Sander, C., Leslie, C. S. & Marks, D. S. Target mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6, 363 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Garcia, D. M. et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nature Struct. Mol. Biol. 18, 1139–1146 (2011).

    CAS  Google Scholar 

  85. Lanet, E. et al. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21, 1762–1768 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Seitz, H. Redefining microRNA targets. Curr. Biol. 19, 870–873 (2009). This paper presents a thoughtful reconsideration of what defines a miRNA target and introduces the term miRNA decoy.

    CAS  PubMed  Google Scholar 

  87. Romeo, T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 29, 1321–1330 (1998).

    CAS  PubMed  Google Scholar 

  88. Gottesman, S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 58, 303–328 (2004).

    CAS  PubMed  Google Scholar 

  89. Hellwig, S. & Bass, B. L. A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes. Proc. Natl Acad. Sci. USA 105, 12897–12902 (2008).

    CAS  PubMed  Google Scholar 

  90. Ebert, M. S. & Sharp, P. A. MicroRNA sponges: progress and possibilities. RNA 16, 2043–2050 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nature Rev. Genet. 8, 93–103 (2007).

    CAS  PubMed  Google Scholar 

  93. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS  PubMed  Google Scholar 

  95. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hirotsune, S. et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423, 91–96 (2003).

    CAS  PubMed  Google Scholar 

  97. Gray, T. A., Wilson, A., Fortin, P. J. & Nicholls, R. D. The putatively functional Mkrn1-p1 pseudogene is neither expressed nor imprinted, nor does it regulate its source gene in trans. Proc. Natl Acad. Sci. 103, 12039–12044 (2006).

    CAS  PubMed  Google Scholar 

  98. Ebert, M. S. & Sharp, P. A. Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858–R861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tay, Y., Rinn, J. & Pandolfi, P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sumazin, P. et al. An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Roux, J., Gonzàlez-Porta, M. & Robinson-Rechavi, M. Comparative analysis of human and mouse expression data illuminates tissue-specific evolutionary patterns of miRNAs. Nucleic Acids Res. 40, 5890–5900 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. & Mayr, C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue- specific expression. Genes Dev. 27, 2380–2396 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Karreth, F. A. et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nature Struct. Mol. Biol. 18, 1218–1226 (2011).

    CAS  Google Scholar 

  106. Braun, J. E., Huntzinger, E. & Izaurralde, E. The role of GW182 proteins in miRNA-mediated gene silencing. Adv. Exp. Med. Biol. 768, 147–163 (2013).

    CAS  PubMed  Google Scholar 

  107. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Legnini, I., Morlando, M., Mangiavacchi, A., Fatica, A. & Bozzoni, I. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol. Cell 53, 506–514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Figliuzzi, M., Marinari, E. & De Martino, A. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys. J. 104, 1203–1213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Khan, A. A. et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nature Biotech. 27, 549–555 (2009).

    CAS  Google Scholar 

  111. Choi, W.-Y., Giraldez, A. J. & Schier, A. F. Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007).

    CAS  PubMed  Google Scholar 

  112. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Schueler, M. et al. Differential protein occupancy profiling of the mRNA transcriptome. Genome Biol. 15, R15 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753–767 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Osella, M., Bosia, C., Corá, D. & Caselle, M. The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput. Biol. 7, e1001101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Broderick, J. A. & Zamore, P. D. Competitive endogenous RNAs cannot alter microRNA function in vivo. Mol. Cell 54, 711–713 (2014).

    CAS  PubMed  Google Scholar 

  119. Cajigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Brewster, R. C. et al. The transcription factor titration effect dictates level of gene expression. Cell 156, 1312–1323 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Rajewsky, N. & Socci, N. D. Computational identification of microRNA targets. Dev. Biol. 267, 529–535 (2004).

    CAS  PubMed  Google Scholar 

  124. Berg, O. G. & von Hippel, P. H. Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J. Mol. Biol. 193, 723–750 (1987).

    CAS  PubMed  Google Scholar 

  125. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Rev. Genet. 12, 99–110 (2011).

    CAS  PubMed  Google Scholar 

  126. Wang, D. et al. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev. 26, 693–704 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with I. Legnini (Bozzoni laboratory) and J. Schmiedel (van Oudenaarden, Bluethgen and Marks laboratories). They thank P. Zamore for providing feedback on the manuscript, and J. Berg for help with deriving the self-consistency solution for the steady-state model from first principles. They also thank M. Landthaler for input. M.J. thanks the Deutsche Forschungsgemeinschaft for a fellowship in the International Research Training Group Genomics and Systems Biology of Molecular Networks/CSB (GRK 1360) and the BMBF-funded DEEP programme (01KU1216D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Rajewsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Competition

Competition occurs if different ligands can form a complex with the same molecule (for example, an RNA-binding protein). In biochemistry this is often used to characterize an interaction. However, in biochemistry the term 'competition' describes a situation with multiple available species of ligands, regardless of whether these are bound or unbound, which essentially means that 'alternatives are present'. In this Analysis, we use the term for situations in which the binding factor is limited and distributed among many possible ligands (binding sites); that is, we refer to the unbound ligands as 'competing'. This is closer to the intuitive meaning used to describe, for example, markets or sports, where competition is introduced by either limited money or limited trophies, which cannot be awarded to everybody.

Binding equation

At equilibrium, the binding equation gives the site occupancy (Θ) as a function of free ligand concentration (F) and the dissociation constant (Kd). More generally, it describes a system with components that can only be in one of two states, which differ in energy (in this context, bound or unbound). The equation therefore arises in many contexts and is known, for example, as Langmuir isotherm or Fermi function. As we consider non-cooperating, independent binding sites, the binding equation is equivalent to the more general Hill equation, with the Hill coefficient equal to 1.

Occupancy

The probability with which a particular binding site is bound by a regulator, for example, an RNA-binding protein.

Competing endogenous RNA (ceRNA) hypothesis

In its current form, a hypothesis stating that competition for microRNA binding can introduce crosstalk between RNA transcripts, including mRNAs and pseudogenes.

Binding energies

The energies of molecules in a complex, which are contributed by the physical interactions (for example, hydrogen bonding) between them. It is often expressed in kcal mol−1; it determines the dissociation constant (Kd), which describes the concentration at which binding and unbinding are in equilibrium.

CLIP–seq

(Crosslinking and immunoprecipitation followed by sequencing). A biochemical technique to extract RNA-binding protein (RBP)-bound fragments of RNA with high specificity and sensitivity, which are then subjected to high-throughput sequencing to map RBP interactions transcriptome-wide at nucleotide resolution.

Argonaute

(AGO). A functional protein component of the microRNA (miRNA) effector complex, RNA-induced silencing complex (RISC). When AGO is loaded with a miRNA, it is guided to a miRNA target site on a target mRNA. It reduces stability and protein production of a target mRNA.

CLASH

(Crosslinking, ligation and sequencing of hybrids). A method that uses high-throughput sequencing to profile and computationally analyse RNA–RNA interactions (for example microRNA–target binding).

Excess

Species A is in excess over species B if its concentration is greater. In the context of binding or simple complex formation with a 1:1 stoichiometry, this may be an indication that most molecules of B are bound. However, the fraction of B that is bound by A is described by the binding equation and strongly depends on the dissociation constant (Kd). For example, weak binding may require many times more A than B to be present before substantial amounts of complex are formed.

Small interfering RNA (siRNA)-directed cleavage by AGO

A process by which target mRNAs are cleaved by the endonucleolytic ('slicing') activity of Argonaute (AGO) proteins, which is triggered when complementarity extends beyond position 11 of the guide RNA. Base-pairing with positions 10 and 11 distinguishes siRNA function (slicing) from microRNA function (no slicing).

Dissociation constant

(Kd). In the absence of competition effects, the concentration of the unbound, free regulator (for example, an RNA-binding protein) at which a binding site is bound or unbound with equal probability. It is derived from the binding energy (E) of the regulator bound to the site: Kd = exp(E/kBT) × [mol/L], where kB is the Boltzmann constant and T is the temperature in Kelvin. As binding energies are negative, strong binding corresponds to a small Kd. Kd can also be defined as the ratio of the off-rates and on-rates: Kd = koff/kon.

Threshold concentration

(Also known as equivalence point of titration). The total ligand concentration at which occupancy is 50%. Without competition effects, this is equal to the dissociation constant (Kd). With many competing binding sites, the free ligand concentration can be much lower than the total concentration, which leads to increased threshold concentrations.

Surface plasmon resonance

A precise technique to measure dissociation constants, for example, for binding of RNA-binding proteins to RNA sequences.

On-rates and off-rates

The rates at which a complex of two molecules is formed (on-rate, measured in M−1 s−1) and decays (off-rate, measured in s−1). They are determined by the series of structural and energetic changes that both molecules undergo upon binding or unbinding. These intrinsic rates depend on temperature and the solvent, but not on the concentrations of the molecules that form the complex. Kinetic (time-dependent) models of molecular interactions require knowledge of these rates.

Seed match

The core region of a microRNA (miRNA) binding site. It is complementary to nucleotides 2–7 (the seed) of the miRNA (guide RNA) and forms a duplex with the miRNA upon binding, which contributes most of the binding energy.

Equimolar

Pertaining to the situation where the same number of different molecules is present in the same volume. The concentrations of these molecules are the same.

Target mimic

A plant microRNA binding site that is resistant to cleavage.

miRNA sponge

A highly expressed RNA transcript that carries an unusually large number (~5 or more) of binding sites for the same microRNA (miRNA). The term was originally introduced for artificial constructs designed to inhibit miRNA function.

miRNA decoys

MicroRNA binding sites that are not selected for conferring repression on its target transcript; they are non-functional or act by sequestration.

Pseudogene

A mutated copy of a protein-coding gene that has lost a functional open reading frame. Some pseudogenes seem to be conserved, but their function is unclear.

Long non-coding RNA

An RNA transcript of at least 200 nucleotides in length that cannot be translated. Many long non-coding RNAs are spliced and capped RNA polymerase II transcripts with poly(A) tails; the function of most long non-coding RNAs is unknown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jens, M., Rajewsky, N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 16, 113–126 (2015). https://doi.org/10.1038/nrg3853

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing