Article series: Non-coding RNA

The rise of regulatory RNA

Journal name:
Nature Reviews Genetics
Year published:
Published online


Discoveries over the past decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also involved in the regulation of genome organization and gene expression, which is increasingly elaborate in complex organisms. Regulatory RNA seems to operate at many levels; in particular, it plays an important part in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here, we review the emergence of the previously unsuspected world of regulatory RNA from a historical perspective.

At a glance


  1. The rise of regulatory RNA
    Figure 1: The rise of regulatory RNA
  2. Complex expression of the genome and examples of non-coding RNA expression.
    Figure 2: Complex expression of the genome and examples of non-coding RNA expression.

    The mammalian transcriptional landscape is represented graphically with genes expressing ribosomal RNAs, tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), various protein-coding and non-coding genes (which encode mRNAs and long non-coding RNAs (lncRNAs), respectively), as well as genes expressing small regulatory RNAs such as microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), promoter-associated short RNAs (PASRs), transcription initiation RNAs (tiRNAs) and splice site RNAs (spliRNAs), snoRNA-derived small RNAs and tRNA-derived small RNAs. The transcriptional units are not depicted to scale.

  3. Functional pathways of small regulatory RNAs.
    Figure 3: Functional pathways of small regulatory RNAs.

    MicroRNA (miRNA) precursors (that is, pri-miRNAs) are expressed as stem–loop structures75, which interact with Drosha76 and DGCR8 (also known as Pasha) (step 1). They are then processed into pre-miRNAs and exported from the nucleus by exportin 5 (step 2). These transcripts are further processed by Dicer to small (21–23-nucleotide) double-stranded RNAs, one strand of which is loaded into the Argonaute (AGO) component of the RNA-induced silencing complex (RISC) (step 3). Exogenously introduced small interfering RNAs (siRNAs) can also be processed by RISC. The endogenous miRNA or siRNA, or exogenously added siRNA, can then target the repression of translation (step 4) and/or cleavage of homology-containing transcripts81, 82 (step 5). Some small RNAs are functional in the nucleus. Exogenously introduced small antisense RNAs (asRNAs) can induce epigenetic silencing of targeted loci88, 342, 343 — a pathway that miRNAs may also use in the nucleus92 (step 6). Transcription initiation RNAs (tiRNAs) and splice site RNAs (spliRNAs)121, 122 are expressed through an unknown pathway that may involve RNA polymerase II (Pol II) backtracking and TFIIS cleavage123 (not shown); tiRNAs and spliRNAs are shown to modulate CCCTC-binding factor (CTCF) chromatin localization and to be associated with nucleosome positioning124 (step 7). DNMT3A, DNA (cytosine-5)-methyltransferase 3A; EZH2, enhancer of Zeste 2; H3K9ac, histone H3 lysine 9 acetylation; HDAC1, histone deacetylase 1; TARBP2, RISC-loading complex subunit TARBP2 (also known as TRBP).

  4. Various roles for long non-coding RNAs in cellular regulation.
    Figure 4: Various roles for long non-coding RNAs in cellular regulation.

    A | Long non-coding RNAs (lncRNAs) are expressed from many loci in the genome — sense and antisense, intronic, overlapping and intergenic with respect to nearby protein-coding loci — and function in both cis and trans. B | Nuclear functional lncRNAs can modulate gene expression both transcriptionally and epigenetically. Some lncRNAs interact with proteins to control the access of chromatin to cellular components and/or guide epigenetic regulatory complexes to target loci, which results in both transcriptional suppression201 (part Ba) and activation or suppression (that is, bimodal control)194 (part Bb). Proteins involved in chromatin modification — such as DNA (cytosine-5)-methyltransferase 3A (DNMT3A), enhancer of Zeste 2 (EZH2), euchromatic histone-lysine N-methyltransferase 2 (EHMT2; also known as G9a), chromodomain Y-like protein (CDYL), repressor element 1-silencing transcription factor (REST), co-repressor of REST (coREST), trithorax-activating complex MLL1 (Ref. 207) (not shown) and Polycomb repressive complex 2 (PRC2) — have been associated with lncRNA-mediated epigenetic silencing194, 201, 265; the histone demethylase LSD1 (also known as KDM1A) has been associated with activation of silent loci. Enhancer functional lncRNAs tether distal enhancer elements with their promoters344, 345, presumably in concert with a protein component that has yet to be determined (shown as 'unknown') (part Bc). Decoy functional lncRNAs affect transcription by binding to proteins such as DNMT1 to sequester them from their sites of action, which leads to a loss of maintenance of DNA methylation and gene activation263 (part Bd). C | Some lncRNAs can function in both nuclear and cytoplasmic compartments of the cell to affect gene expression and translation of mRNAs. Decoy functional lncRNA complexes affect microRNA (miRNA) targeting of mRNAs (part Ca). Some lncRNAs can interact with each other or with mRNAs to sequester small regulatory RNAs, such as miRNAs and therefore RNA-induced silencing complex (RISC), from protein-coding mRNAs201, 337, 338. Translational regulatory lncRNAs have been observed to recruit protein complexes that consist of heterogeneous nuclear ribonucloprotein K (hnRNPK), fragile X mental retardation syndrome-related protein 1 (FXR1), FXR2 and Poly(U)-binding splicing factor (PUF60) to homology-containing protein-coding mRNAs, where they bind to and sequester the mRNAs from the translational machinery346 and regulate translation (part Cb). lncRNAs can also bind to homology-containing mRNAs and recruit proteins such as QKI and serine/arginine-rich splicing factor 1 (SRSF1), both of which modulate the splicing of the targeted mRNA341 (part Cc). H3K9ac, histone H3 lysine 9 acetylation; me, methylation; Pol II, RNA polymerase II.


  1. Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).
  2. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499506 (1941).
  3. Comfort, N. C. The Tangled Field: Barbara McClintock's Search for the Patterns of Genetic Control (Harvard Univ. Press, 2003).
  4. Mattick, J. S. The genetic signatures of noncoding RNAs. PLoS Genet. 5, e1000459 (2009).
  5. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737738 (1953).
  6. Crick, F. H. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138163 (1958).
  7. Palade, G. E. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1, 5968 (1955).
  8. Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I. & Zamecnik, P. C. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem. 231, 241257 (1958).
  9. Brenner, S., Jacob, F. & Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576581 (1961).
  10. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318356 (1961).
  11. Gilbert, W. & Muller-Hill, B. Isolation of the lac repressor. Proc. Natl Acad. Sci. USA 56, 18911898 (1966).
  12. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147151 (2003).
  13. Mattick, J. S. & Gagen, M. J. Accelerating networks. Science 307, 856858 (2005).
  14. Freedman, M. L. et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nature Genet. 43, 513518 (2011).
  15. Weinberg, R. A. & Penman, S. Small molecular weight monodisperse nuclear RNA. J. Mol. Biol. 38, 289304 (1968).
  16. Dreyfuss, G., Philipson, L. & Mattaj, I. W. Ribonucleoprotein particles in cellular processes. J. Cell Biol. 106, 14191425 (1988).
  17. Butcher, S. E. & Brow, D. A. Towards understanding the catalytic core structure of the spliceosome. Biochem. Soc. Trans. 33, 447449 (2005).
  18. Wang, Z. & Burge, C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802813 (2008).
  19. Pessa, H. K. et al. Minor spliceosome components are predominantly localized in the nucleus. Proc. Natl Acad. Sci. USA 105, 86558660 (2008).
  20. Maxwell, E. S. & Fournier, M. J. The small nucleolar RNAs. Annu. Rev. Biochem. 64, 897934 (1995).
  21. Henras, A. K., Dez, C. & Henry, Y. RNA structure and function in C/D and H/ACA s(no)RNPs. Curr. Opin. Struct. Biol. 14, 335343 (2004).
  22. Meier, U. T. The many facets of H/ACA ribonucleoproteins. Chromosoma 114, 114 (2005).
  23. Cavaille, J., Seitz, H., Paulsen, M., Ferguson-Smith, A. C. & Bachellerie, J. P. Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum. Mol. Genet. 11, 15271538 (2002).
  24. Rogelj, B., Hartmann, C. E., Yeo, C. H., Hunt, S. P. & Giese, K. P. Contextual fear conditioning regulates the expression of brain-specific small nucleolar RNAs in hippocampus. Eur. J. Neurosci. 18, 30893096 (2003).
  25. Bachellerie, J. P., Cavaille, J. & Huttenhofer, A. The expanding snoRNA world. Biochimie 84, 775790 (2002).
  26. Jady, B. E., Bertrand, E. & Kiss, T. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J. Cell Biol. 164, 647652 (2004).
  27. Warner, J. R., Soeiro, R., Birnboim, H. C., Girard, M. & Darnell, J. E. Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA. J. Mol. Biol. 19, 349361 (1966).
  28. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349357 (1969).
  29. Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 66, 111138 (1971).
  30. Davidson, E. H., Klein, W. H. & Britten, R. J. Sequence organization in animal DNA and a speculation on hnRNA as a coordinate regulatory transcript. Dev. Biol. 55, 6984 (1977).
  31. Howard, M. L. & Davidson, E. H. Cis-regulatory control circuits in development. Dev. Biol. 271, 109118 (2004).
  32. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic Press, 2006).
  33. Britten, R. Transposable elements have contributed to thousands of human proteins. Proc. Natl Acad. Sci. USA 103, 17981803 (2006).
  34. Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 31713175 (1977).
  35. Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 18 (1977).
  36. Williamson, B. DNA insertions and gene structure. Nature 270, 295297 (1977).
  37. Gilbert, W., Marchionni, M. & McKnight, G. On the antiquity of introns. Cell 46, 151154 (1986).
  38. Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601603 (1980).
  39. Orgel, L. E. & Crick, F. H. Selfish DNA: the ultimate parasite. Nature 284, 604607 (1980).
  40. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147157 (1982).
  41. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849857 (1983).
  42. Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229234 (2013).
  43. Steitz, T. A. & Moore, P. B. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem. Sci. 28, 411418 (2003).
  44. Webb, C. H., Riccitelli, N. J., Ruminski, D. J. & Luptak, A. Widespread occurrence of self-cleaving ribozymes. Science 326, 953 (2009).
  45. de la Pena, M. & Garcia-Robles, I. Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Rep. 11, 711716 (2010).
  46. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843854 (1993).
  47. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901906 (2000).
  48. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 8689 (2000).
  49. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 2536 (2003).
  50. Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845849 (2003).
  51. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858862 (2001).
  52. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853858 (2001).
  53. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862864 (2001).
  54. Williams, T. M. et al. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134, 610623 (2008).
  55. Kaya, K. D., Karakulah, G., Yakicier, C. M. & Acar, A. C. & Konu, O. mESAdb: microRNA expression and sequence analysis database. Nucleic Acids Res. 39, D170D180 (2011).
  56. Berezikov, E. et al. Diversity of microRNAs in human and chimpanzee brain. Nature Genet. 38, 13751377 (2006).
  57. Heimberg, A. M., Sempere, L. F., Moy, V. N., Donoghue, P. C. & Peterson, K. J. MicroRNAs and the advent of vertebrate morphological complexity. Proc. Natl Acad. Sci. USA 105, 29462950 (2008).
  58. John, B. et al. Human microRNA targets. PLoS Biol. 2, e363 (2004).
  59. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 1520 (2005).
  60. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351379 (2010).
  61. Schnall-Levin, M. et al. Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res. 21, 13951403 (2011).
  62. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 44144422 (2011).
  63. Leonardo, T. R., Schultheisz, H. L., Loring, J. F. & Laurent, L. C. The functions of microRNAs in pluripotency and reprogramming. Nature Cell Biol. 14, 11141121 (2012).
  64. Bracken, C. P., Gregory, P. A., Khew-Goodall, Y. & Goodall, G. J. The role of microRNAs in metastasis and epithelial–mesenchymal transition. Cell. Mol. Life Sci. 66, 16821699 (2009).
  65. Rakoczy, J. et al. MicroRNAs-140-5p/140-3p modulate Leydig cell numbers in the developing mouse testis. Biol. Reprod. 88, 143 (2013).
  66. Fernandez-Valverde, S. L., Taft, R. J. & Mattick, J. S. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 60, 18251831 (2011).
  67. Bredy, T. W., Lin, Q., Wei, W., Baker-Andresen, D. & Mattick, J. S. MicroRNA regulation of neural plasticity and memory. Neurobiol. Learn. Mem. 96, 8994 (2011).
  68. Park, C. Y., Choi, Y. S. & McManus, M. T. Analysis of microRNA knockouts in mice. Hum. Mol. Genet. 19, R169R175 (2010).
  69. Waterhouse, P. M., Graham, M. W. & Wang, M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA 95, 1395913964 (1998).
  70. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806811 (1998).
  71. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279289 (1990).
  72. Matzke, M. A., Primig, M., Trnovsky, J. & Matzke, A. J. M. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8, 643649 (1989).
  73. van der Krol, A. R., Mur, L. A., de Lange, P., Mol, J. N. & Stuitje, A. R. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol. Biol. 14, 457466 (1990).
  74. Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell 76, 567576 (1994).
  75. Basyuk, E., Suavet, F., Doglio, A., Bordonne, R. & Bertrand, E. Human let-7 stem–loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 31, 65936597 (2003).
  76. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415419 (2003).
  77. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363366 (2001).
  78. Doi, N. et al. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr. Biol. 13, 4146 (2003).
  79. Peters, L. & Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell 26, 611623 (2007).
  80. Maillard, P. V. et al. Antiviral RNA interference in mammalian cells. Science 342, 235238 (2013).
  81. Zeng, Y., Yi, R. & Cullen, B. R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl Acad. Sci. USA 100, 97799784 (2003).
  82. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835840 (2010).
  83. Ramachandran, P. V. & Ignacimuthu, S. RNA interference — a silent but an efficient therapeutic tool. Appl. Biochem. Biotechnol. 169, 17741789 (2013).
  84. Ahlenstiel, C. L. et al. Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells. Nucleic Acids Res. 40, 15791595 (2012).
  85. Ameyar-Zazoua, M. et al. Argonaute proteins couple chromatin silencing to alternative splicing. Nature Struct. Mol. Biol. 19, 9981004 (2012).
  86. Rudel, S., Flatley, A., Weinmann, L., Kremmer, E. & Meister, G. A multifunctional human Argonaute2-specific monoclonal antibody. RNA 14, 12441253 (2008).
  87. Kim, D. H., Villeneuve, L. M., Morris, K. V. & Rossi, J. J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nature Struct. Mol. Biol. 13, 793797 (2006).
  88. Morris, K. V., Chan, S. W., Jacobsen, S. E. & Looney, D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 12891292 (2004).
  89. Fernandez-Valverde, S. L., Taft, R. J. & Mattick, J. S. Dynamic isomiR regulation in Drosophila development. RNA 16, 18811888 (2010).
  90. Didiano, D. & Hobert, O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nature Struct. Mol. Biol. 13, 849851 (2006).
  91. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789802 (2010).
  92. Kim, D. H., Saetrom, P., Snove, O. Jr & Rossi, J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA 105, 1623016235 (2008).
  93. Blow, M. J. et al. RNA editing of human microRNAs. Genome Biol. 7, R27 (2006).
  94. Hundley, H. A. & Bass, B. L. ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem. Sci. 35, 377383 (2010).
  95. Kawahara, Y., Zinshteyn, B., Chendrimada, T. P., Shiekhattar, R. & Nishikura, K. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer–TRBP complex. EMBO Rep. 8, 763769 (2007).
  96. Ota, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genet. 36, 4045 (2004).
  97. Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 24632476 (1997).
  98. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 37153727 (1998).
  99. Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839849 (2004).
  100. Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. Science 308, 11641167 (2005).
  101. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315327 (2002).
  102. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320324 (2006).
  103. Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203207 (2006).
  104. Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199202 (2006).
  105. Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 17091714 (2006).
  106. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 17321743 (2006).
  107. Aravin, A. A., Hannon, G. J. & Brennecke, J. The Piwi–piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761764 (2007).
  108. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 10891103 (2007).
  109. Brennecke, J. et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322, 13871392 (2008).
  110. Kuramochi-Miyagawa, S. et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908917 (2008).
  111. Cox, D. N., Chao, A. & Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127, 503514 (2000).
  112. Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957971 (2006).
  113. Rajasethupathy, P. et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693707 (2012).
  114. Baillie, J. K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534537 (2011).
  115. Ross, R. J., Weiner, M. M. & Lin, H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505, 353359 (2014).
  116. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 11931207 (2006).
  117. Taft, R. J. et al. Small RNAs derived from snoRNAs. RNA 15, 12331240 (2009).
  118. Ender, C. et al. A human snoRNA with microRNA-like functions. Mol. Cell 32, 519528 (2008).
  119. Kawaji, H. et al. Hidden layers of human small RNAs. BMC Genomics 9, 157 (2008).
  120. Haussecker, D. et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673695 (2010).
  121. Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet. 41, 572578 (2009).
  122. Taft, R. J. et al. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nature Struct. Mol. Biol. 17, 10301034 (2010).
  123. Taft, R. J., Kaplan, C. D., Simons, C. & Mattick, J. S. Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle 8, 23322338 (2009).
  124. Taft, R. J., Hawkins, P. G., Mattick, J. S. & Morris, K. V. The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF) localization. Epigenetics Chromatin 4, 13 (2011).
  125. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 14841488 (2007).
  126. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 18491851 (2008).
  127. Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 18511854 (2008).
  128. Han, J., Kim, D. & Morris, K. V. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc. Natl Acad. Sci. USA 104, 1242212427 (2007).
  129. Wassarman, K. M., Zhang, A. & Storz, G. Small RNAs in Escherichia coli. Trends Microbiol. 7, 3745 (1999).
  130. Gottesman, S. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 21, 399404 (2005).
  131. Tucker, B. J. & Breaker, R. R. Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 15, 342348 (2005).
  132. Winkler, W. C. Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9, 594602 (2005).
  133. Mojica, F. J., Diez-Villasenor, C., Soria, E. & Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol. Microbiol. 36, 244246 (2000).
  134. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174182 (2005).
  135. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 25512561 (2005).
  136. Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653663 (2005).
  137. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 17091712 (2007).
  138. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960964 (2008).
  139. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 18431845 (2008).
  140. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733740 (2009).
  141. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139, 945956 (2009).
  142. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816821 (2012).
  143. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823826 (2013).
  144. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819823 (2013).
  145. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910918 (2013).
  146. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442451 (2013).
  147. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 11731183 (2013).
  148. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nature Methods 10, 973976 (2013).
  149. Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 11631171 (2013).
  150. Hu, J. et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. (2014).
  151. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489491 (2013).
  152. Mattick, J. S. Introns: evolution and function. Curr. Opin. Genet. Dev. 4, 823831 (1994).
  153. Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916919 (2002).
  154. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563573 (2002).
  155. Rinn, J. L. et al. The transcriptional activity of human chromosome 22. Genes Dev. 17, 529540 (2003).
  156. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 11491154 (2005).
  157. Kapranov, P. et al. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res. 15, 987997 (2005).
  158. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 15591563 (2005).
  159. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 15641566 (2005).
  160. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799816 (2007).
  161. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 5774 (2012).
  162. Rosenbloom, K. R. et al. ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res. 40, D912D917 (2012).
  163. Taft, R. J., Pheasant, M. & Mattick, J. S. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29, 288299 (2007).
  164. Mercer, T. R. et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nature Biotech. 30, 99104 (2012).
  165. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101108 (2012).
  166. Hawkins, P. G. & Morris, K. V. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1, 165175 (2010).
  167. Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P. & Lipovich, L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16, 324337 (2010).
  168. Venters, B. J. & Pugh, B. F. Genomic organization of human transcription initiation complexes. Nature 502, 5358 (2013).
  169. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genet. 38, 626635 (2006).
  170. Huang, R. et al. An RNA-seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs. PLoS ONE 6, e27288 (2011).
  171. Roberts, A. & Pachter, L. RNA-seq and find: entering the RNA deep field. Genome Med. 3, 74 (2011).
  172. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Rev. Genet. 10, 155159 (2009).
  173. Frith, M. C. et al. The abundance of short proteins in the mammalian proteome. PLoS Genet. 2, e52 (2006).
  174. Gascoigne, D. K. et al. Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes. Bioinformatics 28, 30423050 (2012).
  175. Banfai, B. et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 22, 16461657 (2012).
  176. Dinger, M. E. et al. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 37, D122D126 (2009).
  177. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223227 (2009).
  178. Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503508 (2006).
  179. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 1166711672 (2009).
  180. Ørom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 4658 (2010).
  181. Sauvageau, M. et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2, e01749 (2013).
  182. Furuno, M. et al. Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS Genet. 2, e37 (2006).
  183. van Bakel, H., Nislow, C., Blencowe, B. J. & Hughes, T. R. Most “dark matter” transcripts are associated with known genes. PLoS Biol. 8, e1000371 (2010).
  184. Clark, M. B. et al. The reality of pervasive transcription. PLoS Biol. 9, e1000625 (2011).
  185. Calin, G. A. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12, 215229 (2007).
  186. Tay, S. K., Blythe, J. & Lipovich, L. Global discovery of primate-specific genes in the human genome. Proc. Natl Acad. Sci. USA 106, 1201912024 (2009).
  187. Lipovich, L. et al. Developmental changes in the transcriptome of human cerebral cortex tissue: long noncoding RNA transcripts. Cereb. Cortex (2013).
  188. Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635640 (2014).
  189. Pheasant, M. & Mattick, J. S. Raising the estimate of functional human sequences. Genome Res. 17, 12451253 (2007).
  190. Pang, K. C., Frith, M. C. & Mattick, J. S. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 22, 15 (2006).
  191. Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 15371550 (2011).
  192. Smith, M. A., Gesell, T., Stadler, P. F. & Mattick, J. S. Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res. 41, 82208236 (2013).
  193. Johnsson, P., Lipovich, L., Grander, D. & Morris, K. V. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim. Biophys. Acta 1840, 10631071 (2014).
  194. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 13111323 (2007).
  195. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499509 (2004).
  196. Clark, M. B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22, 885898 (2012).
  197. Ravasi, T. et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 16, 1119 (2006).
  198. Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F. & Mattick, J. S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA 105, 716721 (2008).
  199. Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 19151927 (2011).
  200. Mattick, J. S., Taft, R. J. & Faulkner, G. J. A global view of genomic information — moving beyond the gene and the master regulator. Trends Genet. 26, 2128 (2010).
  201. Johnsson, P. et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nature Struct. Mol. Biol. 20, 440446 (2013).
  202. Chooniedass-Kothari, S. et al. The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett. 566, 4347 (2004).
  203. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev. 11, 24942509 (1997).
  204. Mercer, T. R. et al. Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res. 39, 23932403 (2011).
  205. Dinger, M. E., Gascoigne, D. K. & Mattick, J. S. The evolution of RNAs with multiple functions. Biochimie 93, 20132018 (2011).
  206. Mercer, T. R. et al. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res. 20, 16391650 (2010).
  207. Dinger, M. E. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18, 14331445 (2008).
  208. Sunwoo, H. et al. MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19, 347359 (2009).
  209. Pang, K. C. et al. Genome-wide identification of long noncoding RNAs in CD8+ T cells. J. Immunol. 182, 77387748 (2009).
  210. Askarian-Amiri, M. E. et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17, 878891 (2011).
  211. Hu, W., Yuan, B., Flygare, J. & Lodish, H. F. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 25, 25732578 (2011).
  212. Mercer, T. R. et al. Long noncoding RNAs in neuronal–glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 11, 14 (2010).
  213. Johnson, R. et al. Regulation of neural macroRNAs by the transcriptional repressor REST. RNA 15, 8596 (2009).
  214. Ng, S.-Y., Johnson, R. & Stanton, L. W. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 31, 522533 (2012).
  215. Takeda, K. et al. Identification of a novel bone morphogenetic protein-responsive gene that may function as a noncoding RNA. J. Biol. Chem. 273, 1707917085 (1998).
  216. Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 59755979 (1999).
  217. Pasmant, E. et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 67, 39633969 (2007).
  218. Wang, F., Li, X., Xie, X., Zhao, L. & Chen, W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 582, 19191927 (2008).
  219. Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F. & Williams, G. T. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195208 (2009).
  220. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 10711076 (2010).
  221. Khaitan, D. et al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 71, 38523862 (2011).
  222. Kerin, T. et al. A noncoding RNA antisense to moesin at 5p14.1 in autism. Sci. Transl Med. 4, 128ra40 (2012).
  223. Amaral, P. P. & Mattick, J. S. Noncoding RNA in development. Mamm. Genome 19, 454492 (2008).
  224. Mourtada-Maarabouni, M., Hedge, V. L., Kirkham, L., Farzaneh, F. & Williams, G. T. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J. Cell Sci. 121, 939946 (2008).
  225. Young, T. L., Matsuda, T. & Cepko, C. L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol. 15, 501512 (2005).
  226. Ginger, M. R. et al. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc. Natl Acad. Sci. USA 103, 57815786 (2006).
  227. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231235 (2013).
  228. Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 11801189 (2013).
  229. Li, L. et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 5, 312 (2013).
  230. Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J. Cell Biol. 193, 3139 (2011).
  231. Ahituv, N. et al. Deletion of ultraconserved elements yields viable mice. PLoS Biol. 5, e234 (2007).
  232. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 17751789 (2012).
  233. Lewejohann, L. et al. Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice. Behav. Brain Res. 154, 273289 (2004).
  234. Mattick, J. S. & Gagen, M. J. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol. Biol. Evol. 18, 16111630 (2001).
  235. Mattick, J. S., Amaral, P. P., Dinger, M. E., Mercer, T. R. & Mehler, M. F. RNA regulation of epigenetic processes. Bioessays 31, 5159 (2009).
  236. Koziol, M. J. & Rinn, J. L. RNA traffic control of chromatin complexes. Curr. Opin. Genet. Dev. 20, 142148 (2010).
  237. Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Struct. Mol. Biol. 20, 300307 (2013).
  238. Mercer, T. R. & Mattick, J. S. Understanding the regulatory and transcriptional complexity of the genome through structure. Genome Res. 23, 10811088 (2013).
  239. Wassenegger, M. RNA-directed DNA methylation. Plant Mol. Biol. 43, 203220 (2000).
  240. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 22322237 (2002).
  241. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 18331837 (2002).
  242. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672676 (2004).
  243. Kanhere, A. et al. Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb repressive complex-2. Mol. Cell 38, 675688 (2010).
  244. Imamura, T. et al. Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem. Biophys. Res. Commun. 322, 593600 (2004).
  245. Morris, K. V., Santoso, S., Turner, A. M., Pastori, C. & Hawkins, P. G. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 4, e1000258 (2008).
  246. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202206 (2008).
  247. Allo, M. et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nature Struct. Mol. Biol. 16, 717724 (2009).
  248. Beltran, M. et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev. 22, 756769 (2008).
  249. Morrissy, A. S., Griffith, M. & Marra, M. A. Extensive relationship between antisense transcription and alternative splicing in the human genome. Genome Res. 21, 12031212 (2011).
  250. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515526 (1992).
  251. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527542 (1992).
  252. Meller, V. H., Wu, K. H., Roman, G., Kuroda, M. I. & Davis, R. L. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88, 445457 (1997).
  253. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genet. 21, 400404 (1999).
  254. Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128, 12751286 (2001).
  255. Ripoche, M. A., Kress, C., Poirier, F. & Dandolo, L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11, 15961604 (1997).
  256. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810813 (2002).
  257. Thakur, N. et al. An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol. Cell. Biol. 24, 78557862 (2004).
  258. Swiezewski, S., Liu, F., Magusin, A. & Dean, C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462, 799802 (2009).
  259. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 17171720 (2008).
  260. Mohammad, F. et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol. Cell. Biol. 28, 37133728 (2008).
  261. Kotake, Y. et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30, 19561962 (2011).
  262. Mohammad, F., Mondal, T., Guseva, N., Pandey, G. K. & Kanduri, C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137, 24932499 (2010).
  263. Di Ruscio, A. et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503, 371376 (2013).
  264. Davidovich, C., Zheng, L., Goodrich, K. J. & Cech, T. R. Promiscuous RNA binding by Polycomb repressive complex 2. Nature Struct. Mol. Biol. 20, 12501257 (2013).
  265. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689693 (2010).
  266. Zhang, H. et al. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. J. Cell Biol. 204, 6175 (2014).
  267. Sanchez-Herrero, E. & Akam, M. Spatially ordered transcription of regulatory DNA in the bithorax complex of Drosophila. Development 107, 321329 (1989).
  268. Bae, E., Calhoun, V. C., Levine, M., Lewis, E. B. & Drewell, R. A. Characterization of the intergenic RNA profile at abdominal-A and Abdominal-B in the Drosophila bithorax complex. Proc. Natl Acad. Sci. USA 99, 1684716852 (2002).
  269. Jones, E. A. & Flavell, R. A. Distal enhancer elements transcribe intergenic RNA in the IL-10 family gene cluster. J. Immunol. 175, 74377446 (2005).
  270. Petruk, S. et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127, 12091221 (2006).
  271. Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20, 14701484 (2006).
  272. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182187 (2010).
  273. Sanchez-Elsner, T., Gou, D., Kremmer, E. & Sauer, F. Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311, 11181123 (2006).
  274. Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C. & Komorowski, J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 19, 17321741 (2009).
  275. Nahkuri, S., Taft, R. J. & Mattick, J. S. Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle 8, 34203424 (2009).
  276. Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon–intron structure. Nature Struct. Mol. Biol. 16, 990995 (2009).
  277. Spies, N., Nielsen, C. B., Padgett, R. A. & Burge, C. B. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 36, 245254 (2009).
  278. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nature Struct. Mol. Biol. 16, 9961001 (2009).
  279. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 9961000 (2010).
  280. Mercer, T. R. et al. DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nature Genet. 45, 852859 (2013).
  281. Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 15701573 (2005).
  282. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454457 (2012).
  283. Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284288 (2011).
  284. Mattick, J. S. RNA as the substrate for epigenome-environment interactions: RNA guidance of epigenetic processes and the expansion of RNA editing in animals underpins development, phenotypic plasticity, learning, and cognition. Bioessays 32, 548552 (2010).
  285. Mattick, J. S. The central role of RNA in human development and cognition. FEBS Lett. 585, 16001616 (2011).
  286. Muotri, A. R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903910 (2005).
  287. Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 11271131 (2009).
  288. Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443446 (2010).
  289. Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nature Genet. 41, 563571 (2009).
  290. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet. 9, 397405 (2008).
  291. Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 2536 (2008).
  292. Brosius, J. The contribution of RNAs and retroposition to evolutionary novelties. Genetica 118, 99116 (2003).
  293. Krull, M., Brosius, J. & Schmitz, J. Alu–SINE exonization: en route to protein-coding function. Mol. Biol. Evol. 22, 17021711 (2005).
  294. Cordaux, R., Udit, S., Batzer, M. A. & Feschotte, C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc. Natl Acad. Sci. USA 103, 81018106 (2006).
  295. Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13, R107 (2012).
  296. Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013).
  297. Czerwoniec, A. et al. MODOMICS: a database of RNA modification pathways. 2008 update. Nucleic Acids Res. 37, D118D121 (2009).
  298. Cantara, W. A. et al. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39, D195D201 (2011).
  299. Motorin, Y., Lyko, F. & Helm, M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 38, 14151430 (2010).
  300. Abbasi-Moheb, L. et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 90, 847855 (2012).
  301. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 16351646 (2012).
  302. Jia, G., Fu, Y. & He, C. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 29, 108115 (2013).
  303. Saletore, Y. et al. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 13, 175 (2012).
  304. Saletore, Y., Chen-Kiang, S. & Mason, C. E. Novel RNA regulatory mechanisms revealed in the epitranscriptome. RNA Biol. 10, 342346 (2013).
  305. Brosnan, C. A. et al. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 1474114746 (2007).
  306. Dinger, M. E., Mercer, T. R. & Mattick, J. S. RNAs as extracellular signaling molecules. J. Mol. Endocrinol. 40, 151159 (2008).
  307. Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295298 (2006).
  308. Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469474 (2006).
  309. Chandler, V. L. Paramutation: from maize to mice. Cell 128, 641645 (2007).
  310. Nadeau, J. H. Transgenerational genetic effects on phenotypic variation and disease risk. Hum. Mol. Genet. 18, R202R210 (2009).
  311. Buckley, B. A. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447451 (2012).
  312. Herbert, A. & Rich, A. RNA processing in evolution: the logic of soft-wired genomes. Ann. NY Acad. Sci. 870, 119132 (1999).
  313. Herbert, A. & Rich, A. RNA processing and the evolution of eukaryotes. Nature Genet. 21, 265269 (1999).
  314. Mattick, J. S. Has evolution learnt how to learn? EMBO Rep. 10, 665 (2009).
  315. Mattick, J. S. & Makunin, I. V. Non-coding RNA. Hum. Mol. Genet. 15, R1729 (2006).
  316. Gingeras, T. R. Origin of phenotypes: genes and transcripts. Genome Res. 17, 682690 (2007).
  317. Mattick, J. S. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 25, 930939 (2003).
  318. Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nature Rev. Genet. 7, 98108 (2006).
  319. Lin, M. F. et al. Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes. Genome Res. 21, 19161928 (2011).
  320. Birnbaum, R. Y. et al. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res. 22, 10591068 (2012).
  321. Stergachis, A. B. et al. Exonic transcription factor binding directs codon choice and affects protein evolution. Science 342, 13671372 (2013).
  322. Duret, L., Chureau, C., Samain, S., Weissenbach, J. & Avner, P. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312, 16531655 (2006).
  323. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 10191030 (1993).
  324. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384388 (2013).
  325. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333338 (2013).
  326. Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792806 (2013).
  327. Wang, J. et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38, 53665383 (2010).
  328. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 10331038 (2010).
  329. Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell 48, 169181 (2012).
  330. Arteaga-Vazquez, M. A. & Chandler, V. L. Paramutation in maize: RNA mediated trans-generational gene silencing. Curr. Opin. Genet. Dev. 20, 156163 (2010).
  331. Sarkies, P. & Miska, E. A. Is there social RNA? Science 341, 467468 (2013).
  332. Nowacki, M. et al. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451, 153158 (2008).
  333. Lopez de Silanes, I., Stagno d'Alcontres, M. & Blasco, M. A. TERRA transcripts are bound by a complex array of RNA-binding proteins. Nature Commun. 1, 33 (2010).
  334. Walter, P. & Blobel, G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299, 691698 (1982).
  335. Ji, X. et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153, 855868 (2013).
  336. Fox, A. H., Bond, C. S. & Lamond, A. I. P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol. Biol. Cell 16, 53045315 (2005).
  337. Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biol. 13, 95101 (2011).
  338. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925938 (2010).
  339. Tripathi, V. et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 9, e1003368 (2013).
  340. Sone, M. et al. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J. Cell Sci. 120, 24982506 (2007).
  341. Barry, G. et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol. Psychiatry 19, 486494 (2014).
  342. Weinberg, M. S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12, 256262 (2006).
  343. Janowski, B. A. et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nature Struct. Mol. Biol. 13, 787792 (2006).
  344. Ling, J., Baibakov, B., Pi, W., Emerson, B. M. & Tuan, D. The HS2 enhancer of the beta-globin locus control region initiates synthesis of non-coding, polyadenylated RNAs independent of a cis-linked globin promoter. J. Mol. Biol. 350, 883896 (2005).
  345. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516520 (2013).
  346. Gumireddy, K. et al. Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J. 32, 26722684 (2013).
  347. Watson, J. D. & Crick, F. H. Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964967 (1953).
  348. Holmes, D. S., Mayfield, J. E., Sander, G. & Bonner, J. Chromosomal RNA: its properties. Science 177, 7274 (1972).
  349. Brannan, C. I., Dees, E. C., Ingram, R. S. & Tilghman, S. M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10, 2836 (1990).
  350. Fire, A. et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391, 806811 (1998).
  351. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950952 (1999).
  352. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494498 (2001).
  353. Mattick, J. S. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2, 986991 (2001).
  354. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 14371441 (2004).

Download references

Author information


  1. School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.

    • Kevin V. Morris
  2. Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; the School of Biotechnology and Biomedical Sciences, and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.

    • John S. Mattick

Competing interests statement

The authors declare no competing interests.

Corresponding author

Correspondence to:

Author details

  • Kevin V. Morris

    Kevin V. Morris is an American born scientist. He trained at Humboldt State University, Arcata, California, USA, and the University of California at Davis and San Diego. He worked at the City of Hope National Medical Center, Duarte, California, and is currently an associate professor at the University of New South Wales, Sydney, Australia, and The Scripps Research Institute, La Jolla, California. His interests are to use non-coding RNA pathways to control gene expression and evolutionary states using various human disease model systems, such as cancer and HIV. Kevin V. Morris' homepage.

  • John S. Mattick

    John S. Mattick is the Executive Director of the Garvan Institute of Medical Research, Sydney, Australia, and Adjunct Professor at the University of New South Wales in Sydney. He was trained at the University of Sydney and Monash University in Melbourne, Australia. He has worked at Baylor College of Medicine in Houston, Texas, USA; the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Division of Molecular Biology in Sydney; and the University of Queensland in Brisbane, Australia, where he was Foundation Director of the Institute for Molecular Bioscience and the Australian Genome Research Facility. His interests are in genomics, transcriptomics and RNA biology. John S. Mattick's homepage.

Additional data