Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Transgenerational epigenetic inheritance: how important is it?

An Erratum to this article was published on 17 September 2013

This article has been updated

Abstract

Much attention has been given to the idea of transgenerational epigenetic inheritance, but fundamental questions remain regarding how much takes place and the impact that this might have on organisms. We asked five leading researchers in this area — working on a range of model organisms and in human disease — for their views on these topics. Their responses highlight the mixture of excitement and caution that surrounds transgenerational epigenetic inheritance and the wide gulf between species in terms of our knowledge of the mechanisms that may be involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

  • 17 September 2013

    In the author list and throughout the article, the name of the author 'Bill Kelly' has been changed to 'William G. Kelly'. The article has been corrected online.

References

  1. Cloud, J. Why your DNA isn't your destiny. Time [online], (2010).

  2. Hauser, M. T. et al. Transgenerational epigenetic inheritance in plants. Biochim. Biophys. Acta 1809, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Daxinger, L. & Whitelaw, E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nature Rev. Genet. 13, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Riggs, V. E. A., Martienssen, R. A. & Riggs, A. D. (eds) Epigenetic Mechanisms of Gene Regulation (Cold Spring Harbor Laboratory Press, 1996).

  5. Morgan, H. D. et al. Epigenetic inheritance at the agouti locus in the mouse. Nature Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Cropley, J. E. et al. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc. Natl Acad. Sci. USA 103, 17308–17312 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waterland, R. A. et al. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J. 21, 3380–3385 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Grossniklaus, U. Plant germline development: a tale of cross-talk, signaling, and cellular interactions. Sex. Plant Reprod. 24, 91–95 (2011).

    Article  PubMed  Google Scholar 

  9. Pecinka, A. & Mittelsten Scheid, O. Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol. 53, 801–808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paszkowski, J. & Grossniklaus, U. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant Biol. 14, 195–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Cubas, P. et al. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genet. 38, 948–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rechtsteiner, A. et al. The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet. 6, e1001091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Furuhashi, H. et al. Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenet. Chromatin 3, 15 (2010).

    Article  CAS  Google Scholar 

  17. Gaydos, L. J. et al. Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep. 2, 1169–1177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gassmann, R. et al. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature 484, 534–537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nadeau, J. H. Transgenerational genetic effects on phenotypic variation and disease risk. Hum. Mol. Genet. 18, R202–R210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).

    Article  PubMed  Google Scholar 

  21. Ng, S. F. et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiminez-Chirallon, J. C. et al. Intergenerational 'programming' of glucose intolerance and obesity by in utero undernutrition. Diabetes 58, 460–468 (2009).

    Article  CAS  Google Scholar 

  24. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nature Rev. Genet. 12, 565–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Ohhata, T. Wutz, A. Reactivation of the inactive X chromosome in development and reprogramming. Cell Mol Life Sci. 30 Sep 2012 (doi:10.1007/s00018-012-1174-3).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sasaki H., Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nature Rev. Genet. 9, 129–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Ferguson-Smith, A. C. & Patti, M. E. You are what your dad ate. Cell. Metab. 13, 115–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Fazzari, M. J. & Greally, J. M. Epigenomics: beyond CpG islands. Nature Rev. Genet. 5, 446–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watanabe, T. et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848–852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vourekas, A. et al. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nature Struct. Mol. Biol. 19, 773–781 (2012).

    Article  CAS  Google Scholar 

  34. Wagner, K. D. et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev. Cell. 14, 962–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Charalambous, M., da Rocha, S. T. & Ferguson-Smith, A. C. Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr. Opin. Endocrinol. Diabetes Obes. 14, 3–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Radford, E. J. et al. An unbiased assessment of the role of imprinted genes in an intergeneration model of developmental programming. PLoS Genet. 8, e1002605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ward, L. D. & Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease. Nature Biotech. 30, 1095–1106 (2012).

    Article  CAS  Google Scholar 

  38. Davies, M. N. et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 13, R43 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Heijmans, B. T. & Mill, J. Commentary: the seven plagues of epigenetic epidemiology. Int. J. Epidemiol. 41, 74–78 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bygren, L. O., Kaati, G., Edvinsson, S. Longevity determined by ancestors' over nutrition during their slow growth period. Acta Biotheoret. 49, 53–59 (2001).

    Article  CAS  Google Scholar 

  41. Kaati, G., Bygren, L. O., Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet. 10, 682–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bygren, L. O., Kaati, G., Edvinsson, S. & Pembrey, M. E. Reply to Senn. Eur. J. Hum. Genet. 14, 1149–1150 (2006).

    Article  Google Scholar 

  43. Chen, T. H., Chiu, Y. H. & Boucher, B. J. Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. Am J. Clin. Nutr. 83, 688–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kaati, G., Bygren, L. O., Pembrey, M. & Sjostrom, M. Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 15, 784–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Pembrey, M. E. Imprinting and transgenerational modulation of gene expression; human growth as a model. Acta Genet. Med. Gemellol. 45, 111–125 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Buiting, K. et al. Disruption of the bipartite imprinting centre in a family with Angelman syndrome. Am. J. Hum. Genet. 68, 1290–1294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Golding, J., Pembrey, M., Jones, R. & The ALSPAC Study Team. ALSPAC—The Avon Longitudinal Study of Parents and Children. Paediatr. Perinat. Epidemiol. 15, 74–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Boucher, B. J., Ewen, S. W. & Stowers, J. M. Betel nut (Areca catechu) consumption and the induction of glucose intolerance in adult CD1 mice and in their F1 and F2 offspring. Diabetologia 37, 49–55 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nature Rev. Genet. 6, 435–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Liebman, S. W. & Chernoff, Y. O. Prions in yeast. Genetics 191, 1041–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Halfmann, R. & Lindquist, S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330, 629–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Shorter, J. & Lindquist, S. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J. 27, 2712–2724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 622–626 (1994).

    Article  Google Scholar 

  56. Patino, M. M., Liu, J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Nakayashiki, T., Ebihara, K., Bannai, H. & Nakamura, Y. Yeast [PSI+] “prions” that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell 7, 1121–1130 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Halfmann, R. et al. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482, 363–368 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Suzuki, G., Shimazu, N. & Tanaka, M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336, 355–359 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2012).

    Article  CAS  Google Scholar 

  66. Khraiwesh, B. et al. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta 1819, 137–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Molinier, J. et al. Trasngeneration memory of stress in plants. Nature 442, 1046–1049 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Whittle, C. A. et al. Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany 87, 650–657 (2009).

    Article  CAS  Google Scholar 

  69. Verhoeven, K. J. F. et al. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 185, 1108–1118 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Boyko, A. et al. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of DICER-LIKE proteins. PLoS ONE 5, e9514 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pecinka, A. et al. Transgenerational stress memory is not a general response in Arabidopsis. PLoS ONE 4, e1002605 (2009).

    Article  CAS  Google Scholar 

  72. Verhoeven, K. J. F. et al. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion. PLoS ONE 6, e38605 (2012).

    Article  CAS  Google Scholar 

  73. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Simonet, T. et al. Antagonistic functions of SET-2/SET1 and HPL/HP1 proteins in C. elegans development. Dev. Biol. 312, 367–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Li, T. & Kelly, W. G. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet. 7, e1001349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Katz, D. J. et al. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Walsh, C. P. & Xu, G. L. Cytosine methylation and DNA repair. Curr. Top. Microbiol. Immunol. 301, 283–315 (2006).

    CAS  PubMed  Google Scholar 

  78. Zeybel, M. et al. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nature Med. 18, 1369–1377 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Feinberg, A. P. & Irizarry, R. A. Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl Acad. Sci. USA 107 (Suppl. 1), 1757–1764 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Pembrey, M. E. Male-line transgenerational responses in humans. Hum. Fertil. 13, 268–271 (2010).

    Article  Google Scholar 

  81. Pembrey, M. E. Time to take epigenetic inheritance seriously. Eur. J. Hum. Genet. 10, 669–671 (2002).

    Article  PubMed  Google Scholar 

  82. Holmes, D. L., Lancaster, A. K., Lindquist, S. & Halfmann, R. Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell (in the press).

  83. Brown, J. C. S. & Lindquist, S. A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev. 23, 2320–2332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crow, E. T., Du, Z. & Li, L. A small, glutamine-free domain propagates the [SWI+] prion in budding yeast. Mol. Cell. Biol. 31, 3436–3444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Saupe, S. J. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Sem. Cell Dev. Biol. 22, 460–468 (2011).

    Article  CAS  Google Scholar 

  86. True, H. L. & Lindquist, S. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. McGlinchey, R. P., Kryndushkin, D. & Wickner, R. B. Suicidal [PSI+] is a lethal yeast prion. Proc. Natl Acad. Sci, USA 108, 5337–5341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

U.G. is supported by the Swiss National Science Foundation and the European Research Council. W.G.K. acknowledges J. Lucchesi and S. Battacharyya for helpful discussions and comments. A.C.F.-S. is currently funded by the UK Medical Research Council (MRC), the Wellcome Trust and the EUFP7 programmes EpigeneSys, BLUEPRINT, EpiHealth and INGENIUM. S.L. thanks G. Newby for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ueli Grossniklaus, William G. Kelly, Anne C. Ferguson-Smith, Marcus Pembrey or Susan Lindquist.

Related links

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossniklaus, U., Kelly, W., Ferguson-Smith, A. et al. Transgenerational epigenetic inheritance: how important is it?. Nat Rev Genet 14, 228–235 (2013). https://doi.org/10.1038/nrg3435

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing