Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organization and segregation of bacterial chromosomes

Key Points

  • The bacterial chromosome must be linearly compacted more than 1,000-fold to fit within the bacterial cell.

  • The chromosome is compacted in an orderly and hierarchical fashion in lockstep with DNA replication. This condensation has a central role in organizing replicated sister chromosomes and driving their segregation.

  • The organization of the chromosome within the bacterial cell recapitulates the genetic map.

  • Segregation of bacterial chromosomes can be broken down into three discrete steps: separation of the newly replicated origins; bulk chromosome segregation; and resolution and transport of the replication termini at the division septum.

  • In many bacteria, origin segregation is facilitated by a highly conserved partitioning system.

  • Bulk chromosome segregation is principally driven by the orderly compaction of the replicated sisters along adjacent DNA segments. This lengthwise condensation is mediated by the concerted action of supercoiling, small nucleoid-associated proteins and structural maintenance of chromosome (SMC) condensin complexes.

  • Segregation of replicated termini requires topoisomerase IV to remove catenanes and XerCD recombinase to convert chromosome dimers into monomers. Decatenation and dimer resolution are coordinated and facilitated by a septum-associated DNA translocase.

Abstract

The bacterial chromosome must be compacted more than 1,000-fold to fit into the compartment in which it resides. How it is condensed, organized and ultimately segregated has been a puzzle for over half a century. Recent advances in live-cell imaging and genome-scale analyses have led to new insights into these problems. We argue that the key feature of compaction is the orderly folding of DNA along adjacent segments and that this organization provides easy and efficient access for protein–DNA transactions and has a central role in driving segregation. Similar principles and common proteins are used in eukaryotes to condense and to resolve sister chromatids at metaphase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The bacterial nucleoid.
Figure 2: Topological organization of the bacterial chromosome.
Figure 3: Spatial organization of bacterial chromosomes.
Figure 4: Chromosome segregation viewed in three steps.

Similar content being viewed by others

References

  1. Baker, J. R. The cell-theory: a restatement, history, and critique. Part V. The multiplication of nuclei. Q. J. Microsc. Sci. 96, 449–481 (1955).

    Google Scholar 

  2. Piekarski, G. Zytologische Untersuchungen an Paratyphus und Coli Bakterien. Arch. Mikrobiol. 8, 428–429 (in German) (1937).

    Article  Google Scholar 

  3. Stille, B. Zytologische Untersuchungen an Bakterien mit Hilfe der feulgenschen Nuclealreaktion. Arch. Mikrobiol. 8, 124–148 (in German) (1937).

    Article  Google Scholar 

  4. Robinow, C. & Kellenberger, E. The bacterial nucleoid revisited. Microbiol. Rev. 58, 211–232 (1994). This classic review describes the history of the bacterial nucleoid and discusses its anatomy after various treatments and fixations.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis, P. J., Thaker, S. D. & Errington, J. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J. 19, 710–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pettijohn, D. E. & Hecht, R. RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harb. Symp. Quant. Biol. 38, 31–41 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Delius, H. & Worcel, A. Electron microscopic visualization of the folded chromosome of Escherichia coli. J. Mol. Biol. 82, 107–109 (1974).

    Article  CAS  PubMed  Google Scholar 

  8. Worcel, A. & Burgi, E. On the structure of the folded chromosome of Escherichia coli. J. Mol. Biol. 71, 127–147 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Kavenoff, R. & Ryder, O. A. Electron microscopy of membrane-associated folded chromosomes of Escherichia coli. Chromosoma 55, 13–25 (1976). Using electron microscopy to visualize gently lysed bacterial cells, this study shows that the nucleoid is composed of supercoiled loops of DNA that radiate from a central core.

    Article  CAS  PubMed  Google Scholar 

  10. Kavenoff, R. & Bowen, B. C. Electron microscopy of membrane-free folded chromosomes from Escherichia coli. Chromosoma 59, 89–101 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Holmes, V. F. & Cozzarelli, N. R. Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc. Natl Acad. Sci. USA 97, 1322–1324 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trun, N. J. & Marko, J. F. Architecture of a bacterial chromosome. Am. Soc. Microbiol. News 6466, 276 (1998).

    Google Scholar 

  13. Higgins, N. P., Yang, X., Fu, Q. & Roth, J. R. Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium. J. Bacteriol. 178, 2825–2835 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Postow, L., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004). This study investigates the organization and size of topological domains in E. coli and finds that domains have an average size of 10 kb with randomly placed barriers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stein, R. A., Deng, S. & Higgins, N. P. Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol. Microbiol. 56, 1049–1061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deng, S., Stein, R. A. & Higgins, N. P. Organization of supercoil domains and their reorganization by transcription. Mol. Microbiol. 57, 1511–1521 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cui, Y., Petrushenko, Z. M. & Rybenkov, V. V. MukB acts as a macromolecular clamp in DNA condensation. Nature Struct. Mol. Biol. 15, 411–418 (2008).

    Article  CAS  Google Scholar 

  18. Fiebig, A., Keren, K. & Theriot, J. A. Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes. Mol. Microbiol. 60, 1164–1178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weber, S. C., Spakowitz, A. J. & Theriot, J. A. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 10466, 238102 (2010).

    Article  CAS  Google Scholar 

  20. Weber, S. C., Spakowitz, A. J. & Theriot, J. A. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc. Natl Acad. Sci. USA 109, 7338–7343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Drlica, K. Control of bacterial DNA supercoiling. Mol. Microbiol. 6, 425–433 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Luttinger, A. The twisted 'life' of DNA in the cell: bacterial topoisomerases. Mol. Microbiol. 15, 601–606 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Nollmann, M., Crisona, N. J. & Arimondo, P. B. Thirty years of Escherichia coli DNA gyrase: from in vivo function to single-molecule mechanism. Biochimie 89, 490–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Hsu, Y. H., Chung, M. W. & Li, T. K. Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization. Nucleic Acids Res. 34, 3128–3138 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tadesse, S. & Graumann, P. L. Differential and dynamic localization of topoisomerases in Bacillus subtilis. J. Bacteriol. 188, 3002–3011 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crisona, N. J., Strick, T. R., Bensimon, D., Croquette, V. & Cozzarelli, N. R. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rovinskiy, N., Agbleke, A. A., Chesnokova, O., Pang, Z. & Higgins, N. P. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet. 866, e1002845 (2012).

    Article  CAS  Google Scholar 

  28. Khodursky, A. B. et al. Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc. Natl Acad. Sci. USA 97, 9419–9424 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peter, B. J., Ullsperger, C., Hiasa, H., Marians, K. J. & Cozzarelli, N. R. The structure of supercoiled intermediates in DNA replication. Cell 94, 819–827 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ullsperger, C. & Cozzarelli, N. R. Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J. Biol. Chem. 271, 31549–31555 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Zechiedrich, E. L., Khodursky, A. B. & Cozzarelli, N. R. Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev. 11, 2580–2592 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rybenkov, V. V., Ullsperger, C., Vologodskii, A. V. & Cozzarelli, N. R. Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277, 690–693 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Shintomi, K. & Hirano, T. Sister chromatid resolution: a cohesin releasing network and beyond. Chromosoma 119, 459–467 (2010).

    Article  PubMed  Google Scholar 

  34. Higgins, N. P. A human TOP2A core DNA binding X-ray structure reveals topoisomerase subunit dynamics and a potential mechanism for SUMO modulation of decatenation. J. Mol. Biol. 424, 105–108 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Wendorff, T. J., Schmidt, B. H., Heslop, P., Austin, C. A. & Berger, J. M. The structure of DNA-bound human topoisomerase II alpha: conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J. Mol. Biol. 424, 109–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hardy, C. D. & Cozzarelli, N. R. A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol. Microbiol. 57, 1636–1652 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Azam, T. A., Hiraga, S. & Ishihama, A. Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 5, 613–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Azam, T. A. & Ishihama, A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274, 33105–33113 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Dame, R. T., Wyman, C. & Goosen, N. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res. 28, 3504–3510 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Noom, M. C., Navarre, W. W., Oshima, T., Wuite, G. J. & Dame, R. T. H-NS promotes looped domain formation in the bacterial chromosome. Curr. Biol. 17, R913–R914 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Skoko, D. et al. Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis. J. Mol. Biol. 364, 777–798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dame, R. T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol. Microbiol. 56, 858–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Luijsterburg, M. S., Noom, M. C., Wuite, G. J. & Dame, R. T. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J. Struct. Biol. 156, 262–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Luijsterburg, M. S., White, M. F., van Driel, R. & Dame, R. T. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 43, 393–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nature Rev. Microbiol. 8, 185–195 (2010).

    Article  CAS  Google Scholar 

  46. Frenkiel-Krispin, D. et al. Nucleoid restructuring in stationary-state bacteria. Mol. Microbiol. 51, 395–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Frenkiel-Krispin, D. et al. Structure of the DNA–SspC complex: implications for DNA packaging, protection, and repair in bacterial spores. J. Bacteriol. 186, 3525–3530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirano, M. & Hirano, T. Opening closed arms: long-distance activation of SMC ATPase by hinge-DNA interactions. Mol. Cell 21, 175–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hirano, T. At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol. 7, 311–322 (2006).

    Article  CAS  Google Scholar 

  50. Haering, C. H. & Nasmyth, K. Building and breaking bridges between sister chromatids. Bioessays 25, 1178–1191 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Nasmyth, K. & Haering, C. H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005). This comprehensive review of SMC complexes describes their discovery, structure and functions.

    Article  CAS  PubMed  Google Scholar 

  52. Britton, R. A., Lin, D. C. & Grossman, A. D. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev. 12, 1254–1259 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hirano, M. & Hirano, T. Positive and negative regulation of SMC–DNA interactions by ATP and accessory proteins. EMBO J. 23, 2664–2673 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mascarenhas, J., Soppa, J., Strunnikov, A. V. & Graumann, P. L. Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein. EMBO J. 21, 3108–3118 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soppa, J. et al. Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the Bacillus subtilis family members ScpA and ScpB. Mol. Microbiol. 45, 59–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hiraga, S. et al. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171, 1496–1505 (1989). This paper presents an elegant genetic screen for mutants that produce anucleate cells identifies MukB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Niki, H., Jaffe, A., Imamura, R., Ogura, T. & Hiraga, S. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10, 183–193 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Danilova, O., Reyes-Lamothe, R., Pinskaya, M., Sherratt, D. & Possoz, C. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 65, 1485–1492 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jensen, R. B. & Shapiro, L. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc. Natl Acad. Sci. USA 96, 10661–10666 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Petrushenko, Z. M., Cui, Y., She, W. & Rybenkov, V. V. Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo. EMBO J. 29, 1126–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M. C. & Sherratt, D. J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528–531 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Mercier, R. et al. The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135, 475–485 (2008). This paper describes the identification and characterization of the molecular basis underlying the termacrodomain in E. coli.

    Article  CAS  PubMed  Google Scholar 

  63. Niki, H., Yamaichi, Y. & Hiraga, S. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14, 212–223 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Valens, M., Penaud, S., Rossignol, M., Cornet, F. & Boccard, F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 23, 4330–4341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Espeli, O., Mercier, R. & Boccard, F. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol. Microbiol. 68, 1418–1427 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Dupaigne, P. et al. Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol. Cell 48, 560–571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, W., Li, G. W., Chen, C., Xie, X. S. & Zhuang, X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333, 1445–1449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maaloe, O., Schaechter, M. & Kjeldgaard, N. O. in Control of Macromolecular Synthesis: A Study of DNA, RNA, and Protein Synthesis in Bacteria (eds Maaløe, O. & Kjeldgaard, N. O.) 188–197 (W. A. Benjamin, 1966).

    Google Scholar 

  69. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Li, Y., Sergueev, K. & Austin, S. The segregation of the Escherichia coli origin and terminus of replication. Mol. Microbiol. 46, 985–996 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Teleman, A. A., Graumann, P. L., Lin, D. C., Grossman, A. D. & Losick, R. Chromosome arrangement within a bacterium. Curr. Biol. 8, 1102–1109 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Webb, C. D. et al. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88, 667–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Lau, I. F. et al. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 49, 731–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA 101, 9257–9262 (2004). Systematic subcellular localization of over 100 genetic loci reveals the linear organization of the C. crescentus chromosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, L. J. & Errington, J. Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol. Microbiol. 27, 777–786 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Ben-Yehuda, S., Rudner, D. Z. & Losick, R. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299, 532–536 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lin, D. C., Levin, P. A. & Grossman, A. D. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc. Natl Acad. Sci. USA 94, 4721–4726 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Breier, A. M. & Cozzarelli, N. R. Linear ordering and dynamic segregation of the bacterial chromosome. Proc. Natl Acad. Sci. USA 101, 9175–9176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Umbarger, M. A. et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44, 252–264 (2011). This study uses a genome-wide chromatin conformation capture method (called 5C) to show that the two arms of the C. crescentus chromosome are spatially distinct.

    Article  CAS  PubMed  Google Scholar 

  82. Berlatzky, I. A., Rouvinski, A. & Ben-Yehuda, S. Spatial organization of a replicating bacterial chromosome. Proc. Natl Acad. Sci. USA 105, 14136–14140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hadizadeh Yazdi, N., Guet, C. C., Johnson, R. C. & Marko, J. F. Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol. Microbiol. 86, 1318–1333 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, X., Liu, X., Possoz, C. & Sherratt, D. J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727–1731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nielsen, H. J., Ottesen, J. R., Youngren, B., Austin, S. J. & Hansen, F. G. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol. Microbiol. 62, 331–338 (2006). These two papers show that the two arms of the E. coli chromosome are located in opposite cell halves.

    Article  CAS  PubMed  Google Scholar 

  86. Wiggins, P. A., Cheveralls, K. C., Martin, J. S., Lintner, R. & Kondev, J. Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc. Natl Acad. Sci. USA 107, 4991–4995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lesterlin, C., Gigant, E., Boccard, F. & Espeli, O. Sister chromatid interactions in bacteria revealed by a site-specific recombination assay. EMBO J. 31, 3468–3479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nielsen, H. J., Li, Y., Youngren, B., Hansen, F. G. & Austin, S. Progressive segregation of the Escherichia coli chromosome. Mol. Microbiol. 61, 383–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Jacob, F., Brenner, S. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28, 329–348 (1963). This classic paper proposed the 'replicon theory', providing insight into the regulation of DNA synthesis and segregation of DNA into daughter cells.

    Article  CAS  Google Scholar 

  90. Webb, C. D. et al. Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Mol. Microbiol. 28, 883–892 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, X. & Sherratt, D. J. Independent segregation of the two arms of the Escherichia coli ori region requires neither RNA synthesis nor MreB dynamics. J. Bacteriol. 192, 6143–6153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abeles, A. L., Friedman, S. A. & Austin, S. J. Partition of unit-copy miniplasmids to daughter cells. III. The DNA sequence and functional organization of the P1 partition region. J. Mol. Biol. 185, 261–272 (1985).

    Article  CAS  PubMed  Google Scholar 

  93. Ringgaard, S., van Zon, J., Howard, M. & Gerdes, K. Movement and equipositioning of plasmids by ParA filament disassembly. Proc. Natl Acad. Sci. USA 106, 19369–19374 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sengupta, M., Nielsen, H. J., Youngren, B. & Austin, S. P1 plasmid segregation: accurate redistribution by dynamic plasmid pairing and separation. J. Bacteriol. 192, 1175–1183 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Ebersbach, G. et al. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol. Microbiol. 61, 1428–1442 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Gerdes, K., Howard, M. & Szardenings, F. Pushing and pulling in prokaryotic DNA segregation. Cell 141, 927–942 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Schumacher, M. A. Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem. J. 412, 1–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Livny, J., Yamaichi, Y. & Waldor, M. K. Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. J. Bacteriol. 189, 8693–8703 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ireton, K., Gunther, N. W. & Grossman, A. D. spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176, 5320–5329 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin, D. C. & Grossman, A. D. Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675–685 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Mohl, D. A. & Gober, J. W. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88, 675–684 (1997).

    CAS  PubMed  Google Scholar 

  102. Heidelberg, J. F. et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamaichi, Y. & Niki, H. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 14656–14661 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Godfrin-Estevenon, A. M., Pasta, F. & Lane, D. The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol. Microbiol. 43, 39–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Murray, H., Ferreira, H. & Errington, J. The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol. Microbiol. 61, 1352–1361 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Breier, A. M. & Grossman, A. D. Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol. Microbiol. 64, 703–718 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Leonard, T. A., Butler, P. J. & Lowe, J. Bacterial chromosome segregation: structure & DNA binding of the Soj dimer—a conserved biological switch. EMBO J. 24, 270–282 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vecchiarelli, A. G. et al. ATP control of dynamic P1 ParA–DNA interactions: a key role for the nucleoid in plasmid partition. Mol. Microbiol. 78, 78–91 (2010). This paper provides evidence for a reaction–diffusion type mechanism for ParA-mediated segregation of ParB-bound DNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mierzejewska, J. & Jagura-Burdzy, G. Prokaryotic ParA–ParB–parS system links bacterial chromosome segregation with the cell cycle. Plasmid 67, 1–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Szardenings, F., Guymer, D. & Gerdes, K. ParA ATPases can move and position DNA and subcellular structures. Curr. Opin. Microbiol. 14, 712–718 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Vecchiarelli, A. G., Mizuuchi, K. & Funnell, B. E. Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol. Microbiol. 86, 513–523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ptacin, J. L. et al. A spindle-like apparatus guides bacterial chromosome segregation. Nature Cell Biol. 12, 791–798 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Schofield, W. B., Lim, H. C. & Jacobs-Wagner, C. Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. EMBO J. 29, 3068–3081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shebelut, C. W., Guberman, J. M., van Teeffelen, S., Yakhnina, A. A. & Gitai, Z. Caulobacter chromosome segregation is an ordered multistep process. Proc. Natl Acad. Sci. USA 107, 14194–14198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Toro, E., Hong, S. H., McAdams, H. H. & Shapiro, L. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl Acad. Sci. USA 105, 15435–15440 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ebersbach, G., Briegel, A., Jensen, G. J. & Jacobs-Wagner, C. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 134, 956–968 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bowman, G. R. et al. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134, 945–955 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fogel, M. A. & Waldor, M. K. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 20, 3269–3282 (2006). This paper was the first to show ParA-mediated pulling of a ParB-bound origin from one cell pole to the other.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim, H. J., Calcutt, M. J., Schmidt, F. J. & Chater, K. F. Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J. Bacteriol. 182, 1313–1320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lewis, R. A., Bignell, C. R., Zeng, W., Jones, A. C. & Thomas, C. M. Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology 148, 537–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Bates, D. & Kleckner, N. Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 121, 899–911 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Joshi, M. C. et al. Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc. Natl Acad. Sci. USA 108, 2765–2770 (2011). This paper provides evidence for the model that intranucleoid pushing forces drive origin segregation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. White, M. A., Eykelenboom, J. K., Lopez-Vernaza, M. A., Wilson, E. & Leach, D. R. Non-random segregation of sister chromosomes in Escherichia coli. Nature 455, 1248–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Marko, J. F. Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length. Phys. Rev. E 79, 051905 (2009). Mathematical modelling of two flexible polymer rings suggests that lengthwise compaction is sufficient to drive chromosome segregation.

    Article  CAS  Google Scholar 

  125. Yan, J., Magnasco, M. O. & Marko, J. F. A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401, 932–935 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Painbeni, E., Caroff, M. & Rouviere-Yaniv, J. Alterations of the outer membrane composition in Escherichia coli lacking the histone-like protein HU. Proc. Natl Acad. Sci. USA 94, 6712–6717 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moriya, S. et al. A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol. Microbiol. 29, 179–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Schwartz, M. A. & Shapiro, L. An, S. M. C. ATPase mutant disrupts chromosome segregation in Caulobacter. Mol. Microbiol. 82, 1359–1374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sullivan, N. L., Marquis, K. A. & Rudner, D. Z. Recruitment of SMC by ParB–parS organizes the origin region and promotes efficient chromosome segregation. Cell 137, 697–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jensen, R. B. & Shapiro, L. Cell-cycle-regulated expression and subcellular localization of the Caulobacter crescentus SMC chromosome structural protein. J. Bacteriol. 185, 3068–3075 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gruber, S. & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Jarvis, E. D. et al. Chromosomal organization of rRNA operons in Bacillus subtilis. Genetics 120, 625–635 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Badrinarayanan, A., Lesterlin, C., Reyes-Lamothe, R. & Sherratt, D. The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J. Bacteriol. 194, 4669–4676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jun, S. & Mulder, B. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc. Natl Acad. Sci. USA 103, 12388–12393 (2006). This paper introduces the concept of entropy-driven DNA segregation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jun, S. & Wright, A. Entropy as the driver of chromosome segregation. Nature Rev. Micro 8, 600–607 (2010).

    Article  CAS  Google Scholar 

  136. Steiner, W. W. & Kuempel, P. L. Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site. J. Bacteriol. 180, 6269–6275 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lemon, K. P., Kurtser, I. & Grossman, A. D. Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc. Natl Acad. Sci. USA 98, 212–217 (2001).

    CAS  PubMed  Google Scholar 

  138. Kaimer, C., Schenk, K. & Graumann, P. L. Two DNA translocases synergistically affect chromosome dimer resolution in Bacillus subtilis. J. Bacteriol. 193, 1334–1340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cortez, D. et al. Evidence for a Xer/dif system for chromosome resolution in archaea. PLoS Genet. 666, e1001166 (2010).

    Article  CAS  Google Scholar 

  140. Wu, L. J. & Errington, J. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264, 572–575 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Duggin, I. G., Wake, R. G., Bell, S. D. & Hill, T. M. The replication fork trap and termination of chromosome replication. Mol. Microbiol. 70, 1323–1333 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Grainge, I. et al. Unlinking chromosome catenanes in vivo by site-specific recombination. EMBO J. 26, 4228–4238 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Grainge, I., Lesterlin, C. & Sherratt, D. J. Activation of XerCD–dif recombination by the FtsK DNA translocase. Nucleic Acids Res. 39, 5140–5148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sivanathan, V. et al. KOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation. Mol. Microbiol. 71, 1031–1042 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Steiner, W., Liu, G., Donachie, W. D. & Kuempel, P. The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Microbiol. 31, 579–583 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Murray, H. & Errington, J. Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Hayama, R. & Marians, K. J. Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in Escherichia coli. Proc. Natl Acad. Sci. USA 107, 18826–18831 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Espeli, O., Levine, C., Hassing, H. & Marians, K. J. Temporal regulation of topoisomerase IV activity in E. coli. Mol. Cell 11, 189–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Espeli, O. et al. A MatP–divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J. 31, 3198–3211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zimmerman, S. B. Shape and compaction of Escherichia coli nucleoids. J. Struct. Biol. 156, 255–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Zhou, H. X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cabrera, J. E. & Jin, D. J. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol. 50, 1493–1505 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Cagliero, C. & Jin, D. J. Dissociation and re-association of RNA polymerase with DNA during osmotic stress response in Escherichia coli. Nucleic Acids Res. 41, 315–326 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Fekete, R. A. & Chattoraj, D. K. A cis-acting sequence involved in chromosome segregation in Escherichia coli. Mol. Microbiol. 55, 175–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Jackson, D., Wang, X. & Rudner, D. Z. Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei). Cold Spring Harb. Perspect. Biol. 4, a010389 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Rudner laboratory for advice and encouragement, J. Marko and S. Jun for invaluable discussions, N. Kleckner for sharing unpublished data, B. Ward for expert editing and the anonymous referees for insightful critiques. Support for this work comes from the US National Institutes of Health Grant GM086466. X.W. is a long-term fellow of the Human Frontier Science Program. P.M.L. is a Helen Hay Whitney fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Z. Rudner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David Z. Rudner's homepage

Glossary

DNA transactions

Processes in the cell that act on DNA: for example, transcription, replication, recombination and repair.

Plectonemic loops

Also known as interwound loops, these are loops of DNA that are twisted together as a result of under- or over-winding the DNA duplex.

Decatenation

The act of unlinking interlocked (or catenated) rings.

Topoisomerases

Enzymes that modify DNA topology. Some of these enzymes affect supercoiling by under- or over-winding the DNA, whereas others decatenate interlocked rings.

DNA gyrase

A topoisomerase that introduces negative supercoils into DNA. Often referred to as gyrase. This enzyme functions by cutting both strands of the DNA, passing a looped strand of DNA through the cut site followed by resealing.

Pre-catenanes

Interlocked rings that are generated during replication. Many of these rings are unlinked before the completion of replication. Those that remain after replication is complete are called catenanes.

Sporulation

The process by which a bacterial cell differentiates into a dormant and stress-resistant cell type called a spore.

Chromosome arms

The origin and terminus of replication divide the genome into separate replicated halves. Each half is referred to as a replichore or a chromosome arm.

Septum

The structure generated during the division process that compartmentalizes a cell into two daughter cells.

Plasmid maintenance

The processes that ensure faithful inheritance of a plasmid in daughter cells.

Anucleate cells

For bacteria, refers to cells lacking a chromosome.

Catenanes

Interlocked rings (of circular chromosomes or plasmids) that cannot be separated without breaking the covalent bonds in DNA.

Dimeric chromosomes

Sister chromosomes conjoined into a single circle. Dimeric chromosomes result from an uneven number of homologous recombination events between sisters during replication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Llopis, P. & Rudner, D. Organization and segregation of bacterial chromosomes. Nat Rev Genet 14, 191–203 (2013). https://doi.org/10.1038/nrg3375

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3375

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology