Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration

Key Points

  • Recently developed genomic technologies have shed light on the genomic composition of the ancient Y chromosomes of some primates and Drosophila melanogaster and have shown that Y chromosomes in these species largely conform to the previously held view of being degenerate.

  • The presence of evolutionary strata confirmed by genome sequencing of the sex chromosomes supports that Y-chromosome degeneration occurred through successive arrest of recombination over time. In addition, the enrichment of Y chromosomes for genes of male-beneficial functions suggests that sexually antagonistic mutations may have a role in Y-chromosome evolution.

  • Genome sequencing of young Y chromosomes in plants and neo-Y chromosomes in Drosophila spp. have provided insight into the molecular processes that trigger initiation of Y-chromosome degeneration. Empirical evidence suggests that gene silencing occurs before pseudogenization.

  • Empirical observations in Drosophila neo-sex chromosomes, primate Y chromosomes and theoretical models and computer simulations show that degeneration is not a linear process, and so Y chromosomes in these species will probably not completely degenerate in the future.

Abstract

The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for the differentiation of sex chromosomes.
Figure 2: Neo-sex chromosomes in Drosophila spp.
Figure 3: Evolutionary dynamics of Y-chromosome degeneration.

Similar content being viewed by others

References

  1. Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999). This paper shows that recombination between the human X and Y chromosomes was suppressed in four different time points, forming evolutionary strata.

    Article  CAS  PubMed  Google Scholar 

  2. Ross, M. T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Charlesworth, B. The evolution of sex chromosomes. Science 251, 1030–1033 (1990).

    Article  Google Scholar 

  4. Bull, J. J. Evolution of Sex Determining Mechanisms (Benjamin Cummings, 1983).

    Google Scholar 

  5. Rice, W. R. Evolution of the Y sex chromosome in animals. BioScience 46, 331–343 (1996).

    Article  Google Scholar 

  6. Charlesworth, B. & Charlesworth, D. The degeneration of Y chromosomes. Phil. Trans. R. Soc. Lond. B 355, 1563–1572 (2000).

    Article  CAS  Google Scholar 

  7. Bachtrog, D. et al. Are all sex chromosomes created equal? Trends Genet. 27, 350–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Presgraves, D. C. Sex chromosomes and speciation in Drosophila. Trends Genet. 24, 336–343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Charlesworth, B., Coyne, J. A. & Barton, N. H. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113–146 (1987).

    Article  Google Scholar 

  10. Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article  PubMed  Google Scholar 

  11. Werren, J. H. & Beukeboom, L. W. Sex determination, sex ratios, and genetic conflict. Annu. Rev. Ecol. Syst. 29, 233–261 (1998).

    Article  Google Scholar 

  12. Page, D. C. et al. Reconstructing sex chromosome evolution. Genome Biol. 11, I21 (2010).

    Article  PubMed Central  Google Scholar 

  13. Burgoyne, P. S. The mammalian Y chromosome: a new perspective. Bioessays 20, 363–366 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Castillo, E. R., Marti, D. A. & Bidau, C. J. Sex- and neo-sex chromosomes in Orthoptera: a review. J. Orthoptera Res. 19, 213–231 (2010).

    Article  Google Scholar 

  15. White, M. J. D. Animal Cytology and Evolution (Cambridge Univ. Press, 1973).

    Google Scholar 

  16. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003). This paper shows that the genome sequence of the non-recombining region of the human Y chromosome is a mosaic of different sequences, including X-transposed, X-degenerate and ampliconic regions.

    Article  CAS  PubMed  Google Scholar 

  17. Rozen, S. et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423, 873–876 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lahn, B. T. & Page, D. C. Functional coherence of the human Y chromosome. Science 278, 675–680 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Hughes, J. et al. Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature 437, 100–103 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Hughes, J. F. et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463, 536–539 (2010). This paper shows that the chimpanzee Y chromosome contains twice as many palindromes as humans, yet it has lost large fractions of Y-linked genes since divergence from the last common ancestor with humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hughes, J. F. et al. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483, 82–86 (2012). This study shows that the gene content of the rhesus Y chromosome is highly similar to that of humans, refuting the claim that continuous gene loss is leading to the extinction of the human Y chromosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brosseau, G. E. Genetic analysis of the male fertility factors on the Y-chromosome of Drosophila melanogaster. Genetics 45, 257–274 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gatti, M. & Pimpinelli, S. Cytological and genetic analysis of the Y-chromosome of Drosophila melanogaster. 1. Organization of the fertility factors. Chromosoma 88, 349–373 (1983).

    Article  Google Scholar 

  24. Carvalho, A. B., Lazzaro, B. P. & Clark, A. G. Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. Proc. Natl Acad. Sci. USA 97, 13239–13244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carvalho, A. B., Dobo, B. A., Vibranovski, M. D. & Clark, A. G. Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 13225–13230 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vibranovski, M. D., Koerich, L. B. & Carvalho, A. B. Two new Y-linked genes in Drosophila melanogaster. Genetics 179, 2325–2327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koerich, L. B., Wang, X., Clark, A. G. & Carvalho, A. B. Low conservation of gene content in the Drosophila Y chromosome. Nature 456, 949–951 (2008). This study shows that the gene content of the Drosophila Y chromosome is highly dynamic and that the ancestral Y chromosome is gaining genes at a higher rate than it is losing them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McKee, B. D. & Karpen, G. H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell 61, 61–72 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Williams, S. M., Robbins, L. G., Cluster, P. D., Allard, R. W. & Strobeck, C. Superstructure of the Drosophila ribosomal gene family. Proc. Natl Acad. Sci. USA 87, 3156–3160 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carvalho, A. B., Koerich, L. B. & Clark, A. G. Origin and evolution of Y chromosomes: Drosophila tales. Trends Genet. 25, 270–277 (2009).

    Article  PubMed Central  CAS  Google Scholar 

  31. Lemos, B., Araripe, L. O. & Hartl, D. L. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319, 91–93 (2008). This is the first of a series of papers showing that variation on the Drosophila Y chromosome influences the transcription of hundreds to thousands of genes in the Drosophila genome.

    Article  CAS  PubMed  Google Scholar 

  32. Paredes, S., Branco, A. T., Hartl, D. L., Maggert, K. A. & Lemos, B. Ribosomal DNA deletions modulate genome-wide gene expression: “rDNA-sensitive” genes and natural variation. PLoS Genet. 7, e1001376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, J. et al. Y chromosome mediates ribosomal DNA silencing and modulates the chromatin state in Drosophila. Proc. Natl Acad. Sci. USA 109, 9941–9946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6, 149–162 (1996). This paper provides a classic review on the evolution of sex chromosomes and dosage compensation.

    Article  CAS  PubMed  Google Scholar 

  35. Lahn, B. T., Pearson, N. M. & Jegalian, K. The human Y chromosome, in the light of evolution. Nature Rev. Genet. 2, 207–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Quinn, A. E., Sarre, S. D., Ezaz, T., Graves, J. A. M. & Georges, A. Evolutionary transitions between mechanisms of sex determination in vertebrates. Biol. Lett. 7, 443–448.

  37. Innocenti, P. & Morrow, E. H. The sexually antagonistic fenes of Drosophila melanogaster. PLoS Biol. 8, e1000335 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lemaitre, C. et al. Footprints of inversions at present and past pseudoautosomal boundaries in human. Genome Biol. Evol. 1, 56–66 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Handley, L., Ceplitis, H. & Ellegren, H. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics 167, 367–376 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nicolas, M. et al. A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol. 3, e4 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Wang, J. et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc. Natl Acad. Sci. USA 109, 13710–13715 (2012). The first sequence of a plant Y chromosome reveals evolutionary strata, an accumulation of repetitive DNA and gene loss on a plant Y chromosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waters, P. D., Duffy, B., Frost, C. J., Delbridge, M. L. & Graves, J. A. The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80–130 million years ago. Cytogenet. Cell Genet. 92, 74–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Rice, W. R. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116, 161–167 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Orr, H. A. & Kim, Y. An adaptive hypothesis for the evolution of the Y chromosome. Genetics 150, 1693–1698 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Charlesworth, B. Model for evolution of Y chromosomes and dosage compensation. Proc. Natl Acad. Sci. USA 75, 5618–5622 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bachtrog, D. & Gordo, I. Adaptive evolution of asexual populations under Muller's ratchet. Evol. Int. J. Org. Evol. 58, 1403–1413 (2004).

    Article  Google Scholar 

  48. Peck, J. R. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137, 597–606 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rice, W. R. & Chippindale, A. K. Sexual recombination and the power of natural selection. Science 294, 555–559 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, 1930).

    Book  Google Scholar 

  51. Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).

    Article  CAS  PubMed  Google Scholar 

  52. Bachtrog, D. & Charlesworth, B. Reduced adaptation of a non-recombining neo-Y chromosome. Nature 416, 323–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Bachtrog, D. Adaptation shapes patterns of genome evolution in sexual and asexual genomes in Drosophila. Nature Genet. 34, 215–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Betancourt, A. J. & Presgraves, D. C. Linkage limits the power of natural selection in Drosophila. Proc. Natl Acad. Sci. USA 99, 13616–13620 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Filatov, D. Substitution rates in a new Silene latifolia sex-linked gene, SlssX/Y. Mol. Biol. Evol. 22, 402–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Bartolomé, C. & Charlesworth, B. Evolution of amino-acid sequences and codon usage on the Drosophila miranda neo-sex chromosomes. Genetics 174, 2033–2044 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gordo, I. & Charlesworth, B. The degeneration of asexual haploid populations and the speed of Muller's ratchet. Genetics 154, 1379–1387 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lucchesi, J. C. Gene dosage compensation and the evolution of sex chromosomes. Science 202, 711–716 (1978).

    Article  CAS  PubMed  Google Scholar 

  59. Carvalho, A. & Clark, A. Y chromosome of D. pseudoobscura is not homologous to the ancestral Drosophila Y. Science 307, 108–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Marin, I., Franke, A., Bashaw, G. J. & Baker, B. S. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383, 160–163 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Sturgill, D., Zhang, Y., Parisi, M. & Oliver, B. Demasculinization of X chromosomes in the Drosophila genus. Nature 450, 238–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Assis, R., Zhou, Q. & Bachtrog, D. Sex-biased transcriptome evolution in Drosophila. Genome Biol. Evol. 4, 1189–1200 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Steinemann, M. & Steinemann, S. Enigma of Y chromosome degeneration: neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica 102–103, 409–420 (1998).

  64. Bachtrog, D. Expression profile of a degenerating neo-Y chromosome in Drosophila. Curr. Biol. 16, 1694–1699 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bachtrog, D., Hom, E., Wong, K. M., Maside, X. & de Jong, P. Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biol. 9, R30 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhou, Q. & Bachtrog, D. Sex-specific adaptation drives early sex chromosome evolution in Drosophila. Science 337, 341–345 (2012). This is the first whole-genome and transcriptome analysis of a young, evolving sex chromosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Steinemann, M. & Steinemann, S. Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc. Natl Acad. Sci. USA 89, 7591–7595 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bachtrog, D. Sex chromosome evolution: molecular aspects of Y chromosome degeneration in Drosophila. Genome Res. 15, 1393–1401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou, Q. et al. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans. BMC Genomics 13, 109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, Q. & Bachtrog, D. Chromosome-wide gene silencing initiates Y degeneration in Drosophila. Curr. Biol. 22, 522–525 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Kaiser, V. B., Zhou, Q. & Bachtrog, D. Nonrandom gene loss from the Drosophila miranda neo-Y chromosome. Genome Biol. Evol. 3, 1329–1337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bachtrog, D. Evidence that positive selection drives Y-chromosome degeneration in Drosophila miranda. Nature Genet. 36, 518–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Ming, R., Bendahmane, A. & Renner, S. S. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 62, 485–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Westergaard, M. The mechanism of sex determination in flowering plants. Adv. Genet. 9, 217–281 (1958).

    Article  CAS  PubMed  Google Scholar 

  75. Chibalina, M. V. & Filatov, D. A. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 21, 1475–1479 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bergero, R. & Charlesworth, D. Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr. Biol. 21, 1470–1474 (2011). References 75 and 76 suggest that degeneration of a Y chromosome in plants might be slower in pace relative to animals owing to haploid selection in Y-carrying gametophytes.

    Article  CAS  PubMed  Google Scholar 

  77. Bernasconi, G. et al. Silene as a model system in ecology and evolution. Heredity 103, 5–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Schafer, M., Nayernia, K., Engel, W. & Schafer, U. Translational control in spermatogenesis. Dev. Biol. 172, 344–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Martin, A. et al. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461, 1135–1138 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Graves, J. The degenerate Y chromosome — can conversion save it? Reprod. Fertil. Dev. 16, 527–534 (2004).

    Article  PubMed  Google Scholar 

  81. Aitken, R. & Marshall Graves, J. The future of sex. Nature 415, 963 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Graves, J. Sex chromosome specialization and degeneration in mammals. Cell 124, 901–914 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. Sykes, B. Adam's Curse: A Future Without Men (Norton, 2004).

    Google Scholar 

  84. Bachtrog, D. The temporal dynamics of processes underlying Y chromosome degeneration. Genetics 179, 1513–1525 (2008). This is a theoretical study that examines the temporal dynamics of processes of Y-chromosome degeneration. It shows that rates of gene loss are highly nonlinear on a degenerating Y chromosome, predicting a stable gene content of old Y chromosomes.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Engelstaedter, J. Muller's ratchet and the degeneration of Y chromosomes: a simulation study. Genetics 180, 957–967 (2008).

    Article  Google Scholar 

  86. Hodgkin, J. Primary sex determination in the nematode C. elegans. Development 101, 5–16 (1987).

    PubMed  Google Scholar 

  87. van Tuinen, M. & Hedges, S. B. Calibration of avian molecular clocks. Mol. Biol. Evol. 18, 206–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Veyrunes, F. et al. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 18, 965–973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ellegren, H. Evolution of the avian sex chromosomes and their role in sex determination. Trends Ecol. Evol. 15, 188–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. van Doorn, G. S. & Kirkpatrick, M. Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics 186, 629–645 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Peichel, C. et al. The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome. Curr. Biol. 14, 1416–1424 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Ezaz, T., Sarre, S. D., O'Meally, D., Graves, J. A. M. & Georges, A. Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet. Genome Res. 127, 249–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Mank, J. E. & Avise, J. C. Evolutionary diversity and turn-over of sex determination in teleost fishes. Sexual Dev. 3, 60–67 (2009).

    Article  CAS  Google Scholar 

  94. Sarre, S. D., Ezaz, T. & Georges, A. Transitions between sex-determining systems in reptiles and amphibians. Annu. Rev. Genom. Hum. Genet. 12, 391–406 (2011).

    Article  CAS  Google Scholar 

  95. Quinn, A. E., Sarre, S. D., Ezaz, T., Graves, J. A. M. & Georges, A. Evolutionary transitions between mechanisms of sex determination in vertebrates. Biol. Lett. 7, 443–448 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nakamura, M. Sex determination in amphibians. Semin. Cell Dev. Biol. 20, 271–282 (2009).

    Article  PubMed  Google Scholar 

  97. Devlin, R. H. & Nagahama, Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364 (2002).

    Article  CAS  Google Scholar 

  98. Graves, J. A. M. & Peichel, C. L. Are homologies in vertebrate sex determination due to shared ancestry or to limited options? Genome Biol. 11, 205 (2010).

    Article  CAS  Google Scholar 

  99. Pease, J. B. & Hahn, M. W. Sex chromosomes evolved from independent ancestral linkage groups in winged insects. Mol. Biol. Evol. 29, 1645–1653 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Verhulst, E. C., van de Zande, L. & Beukeboom, L. W. Insect sex determination: it all evolves around transformer. Curr. Opin. Genet. Dev. 20, 376–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Sanchez, L. Sex-determining mechanisms in insects. Int. J. Dev. Biol. 52, 837–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Otto, S. P. et al. About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends Genet. 27, 358–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Iwase, M., Satta, Y., Hirai, H., Hirai, Y. & Takahata, N. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates. BMC Evol. Biol. 10, 225 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Carvalho, A. B. et al. Y chromosome and other heterochromatic sequences of the Drosophila melanogaster genome: how far can we go? Genetica 117, 227–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Bonaccorsi, S., Pisano, C., Puoti, F. & Gatti, M. Y-chromosome loops in Drosophila melanogaster. Genetics 120, 1015–1034 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dimitri, P. & Pisano, C. Position effect variegation in Drosophila melanogaster: relationship between suppression effect and the amount of Y chromosome. Genetics 122, 793–800 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lemos, B., Branco, A. T. & Hartl, D. L. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl Acad. Sci. USA 107, 15826–15831 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang, P.-P., Hartl, D. L. & Lemos, B. Y not a dead end: epistatic interactions between Y-linked regulatory polymorphisms and genetic background affect global gene expression in Drosophila melanogaster. Genetics 186, 109–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Marais, G. A. B., Campos, P. R. A. & Gordo, I. Can intra-Y gene conversion oppose the degeneration of the human Y chromosome? A simulation study. Genome Biol. Evol. 2, 347–357 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Connallon, T. & Clark, A. G. Gene duplication, gene conversion and the evolution of the Y chromosome. Genetics 186, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hughes, J. F. & Rozen, S. Genomics and genetics of human and primate y chromosomes. Annu. Rev. Genom. Hum. Genet. 13, 83–108.

  112. Charlesworth, B. & Charlesworth, D. Rapid fixation of deleterious alleles can be caused by Muller's ratchet. Genet. Res. 70, 63–73 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is funded by US National Institutes of Health grants (R01GM076007 and R01GM093182) and a Packard Fellowship.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Author's homepage

Glossary

Sex chromosomes

A pair of chromosome that determines the sex of an individual.

Genomic conflict

Conflict of different genes within an organism that arises when genes inside a genome are not transmitted by the same rules (such as mitochondria or nuclear genes) or when the transmission of a particular gene is increased to the detriment of other parts of the genome.

Y-chromosome degeneration

The process of gene loss from the Y chromosome.

Recombination

The breaking and rejoining of DNA strands to form a new combination of genetic information.

Heterochromatic

Heterochromatin is a tightly packed form of DNA that is typically genetically inactive and contains repetitive sequences and few genes.

B chromosome

A supernumerary chromosome that is not essential for the life of a species and that is present in only some of the individuals of a species.

Position effect variegation

(PEV). The variable, heritable suppression of genes by their juxtaposition to heterochromatin or telomeres or by movement of a gene into a different nuclear domain or chromosomal context.

Palindromes

A DNA sequence composed of two inverted repeats (arms) separated by a short spacer.

Heteromorphic sex chromosomes

A pair of chromosomes that is morphologically distinct.

Homomorphic sex chromosomes

A pair of chromosomes that is morphologically indistinguishable.

Proto-sex chromosomes

A new pair of chromosomes that (recently) acquired a sex-determining function but that otherwise contains identical genes.

Sexually antagonistic mutations

A mutation that is beneficial to one sex but detrimental to the other.

Genetic linkage

The tendency of genes that are proximal to each other on a chromosome to be inherited together.

Chromosomal inversions

A chromosome rearrangement in which a segment of a chromosome is reversed end to end.

Beneficial mutation

A mutation that increases the survivorship or fecundity (fitness) of its carrier.

Deleterious mutation

A mutation that decreases the survivorship or fecundity (fitness) of its carrier.

Dosage compensation

A process that balances expression of sex-linked and autosomal genes in the heterogametic sex.

Muller's ratchet

The irreversible accumulation of deleterious mutations in a non-recombining population.

Genetic hitchhiking

The fixation of a deleterious mutation that is linked to a beneficial allele.

Ruby in the rubbish model

The selective elimination of a beneficial mutation that is linked to a deleterious allele.

Female heterogametic

Female heterogamety describes a species in which males have two Z chromosomes and females have a Z and a W chromosome.

Male heterogamety

A species in which females have two X chromosomes and males have an X and a Y chromosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14, 113–124 (2013). https://doi.org/10.1038/nrg3366

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing