Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The continuing value of twin studies in the omics era

Key Points

  • Twins are valuable subjects for studies in which control over genetic background and early environmental influences is desired.

  • Monozygotic twins are derived from a single zygote and are therefore matched for genetic background. Dizygotic twins are derived from two zygotes and share the same amount of genetic material as normal siblings. Both types of twins share prenatal and early environmental influences.

  • Twin registries worldwide have established vast collections of longitudinal phenotypic data as well as biological material in twins, offering a valuable resource for studying the molecular biology of complex traits.

  • The classical twin design compares the phenotypic similarity of monozygotic and dizygotic twins to estimate the importance of heritable and environmental influences on complex trait variation. Classical twin studies have provided estimates of heritability for numerous traits in the biomedical, psychiatric and behavioural domain.

  • Multivariate twin studies address the causes of association among phenotypes. Associations can be among different phenotypes or across age and are explained by common genetic or environmental influences.

  • We describe studies that applied the classical twin design to unravel the importance of genetic and environmental influences on variation in DNA methylation, gene expression, metabolomic and proteomic profiles in various tissues and on the composition of gut microbial communities.

  • The comparison of molecular profiles of phenotypically discordant monozygotic twin pairs is a powerful method to identify molecular characteristics associated with complex traits, including point mutations and genomic structural variation, differentially expressed and differentially methylated genes and metabolic profiles. Examples of this approach are given for a range of disorders and traits.

Abstract

The classical twin study has been a powerful heuristic in biomedical, psychiatric and behavioural research for decades. Twin registries worldwide have collected biological material and longitudinal phenotypic data on tens of thousands of twins, providing a valuable resource for studying complex phenotypes and their underlying biology. In this Review, we consider the continuing value of twin studies in the current era of molecular genetic studies. We conclude that classical twin methods combined with novel technologies represent a powerful approach towards identifying and understanding the molecular pathways that underlie complex traits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liability threshold model and disease discordance in monozygotic twins.

References

  1. Javierre, B. M. et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20, 170–179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McRae, A. F. et al. Replicated effects of sex and genotype on gene expression in human lymphoblastoid cell lines. Hum. Mol. Genet. 16, 364–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. York, T. P. et al. Epistatic and environmental control of genome-wide gene expression. Twin Res. Hum. Genet. 8, 5–15 (2005).

    Article  PubMed  Google Scholar 

  4. Martin, N. G. & Eaves, L. J. The genetical analysis of covariance structure. Heredity 38, 79–95 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Kendler, K. S., Heath, A. C., Martin, N. G. & Eaves, L. J. Symptoms of anxiety and symptoms of depression: same genes, different environments? Arch. Gen. Psychiatry 44, 451–457 (1987). This paper describes one of the first studies that used data from MZ and DZ twins to assess whether the co-occurrence of psychiatric symptoms is explained by a shared genetic or environmental aetiology.

    Article  CAS  PubMed  Google Scholar 

  6. Middeldorp, C. M., Cath, D. C., Van Dyck, R. & Boomsma, D. I. The co-morbidity of anxiety and depression in the perspective of genetic epidemiology. A review of twin and family studies. Psychol. Med. 35, 611–624 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Brant, A. M. et al. The developmental etiology of high IQ. Behav. Genet. 39, 393–405 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Haworth, C. M. et al. The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol. Psychiatry 15, 1112–1120 (2010). This paper describes a study based on a large sample of twins from six twin cohorts, showing that the heritability of general cognitive ability increases significantly from childhood to young adulthood.

    Article  CAS  PubMed  Google Scholar 

  9. Purcell, S. Variance components models for gene-environment interaction in twin analysis. Twin Res. 5, 554–571 (2002). This paper describes the implementation of G×E interaction tests in variance component twin analysis, by modelling (unmeasured) genetic effects as a linear function of one or more measures of the environment or moderators.

    Article  PubMed  Google Scholar 

  10. Mustelin, L., Silventoinen, K., Pietiläinen, K., Rissanen, A. & Kaprio, J. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins. Int. J. Obes. 33, 29–36 (2008).

    Article  Google Scholar 

  11. Posthuma, D. & Boomsma, D. I. A note on the statistical power in extended twin designs. Behav. Genet. 30, 147–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Eaves, L. J. Inferring the causes of human variation. J. R. Stat. Soc. Ser. A 140, 324–355 (1977).

    Article  Google Scholar 

  13. Reynolds, C. A., Baker, L. A. & Pedersen, N. L. Models of spouse similarity: applications to fluid ability measured in twins and their spouses. Behav. Genet. 26, 73–88 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. van Grootheest, D. S., van den Berg, S. M., Cath, D. C., Willemsen, G. & Boomsma, D. I. Marital resemblance for obsessive-compulsive, anxious and depressive symptoms in a population-based sample. Psychol. Med. 38, 1731–1740 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Magnus, P., Berg, K. & Bjerkedal, T. No significant difference in birth weight for offspring of birth weight discordant monozygotic female twins. Early Hum. Dev. 12, 55–59 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Nance, W. E., Kramer, A. A., Corey, L. A., Winter, P. M. & Eaves, L. J. A causal analysis of birth weight in the offspring of monozygotic twins. Am. J. Hum. Genet. 35, 1211–1223 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vrieze, S. I. et al. An assessment of the individual and collective effects of variants on height using twins and a developmentally informative study design. PLoS Genet. 7, e1002413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Friberg, L., Cederlof, R., Lundman, T. & Olsson, H. Mortality in smoking discordant monozygotic and dizygotic twins. A study on the Swedish Twin Registry. Arch. Environ. Health 21, 508–513 (1970).

    Article  CAS  PubMed  Google Scholar 

  23. Martin, N. G., Carr, A. B., Oakeshott, J. G. & Clark, P. Co-twin control studies: vitamin C and the common cold. Prog. Clin. Biol. Res. 103, 365–373 (1982).

    PubMed  Google Scholar 

  24. de Moor, M. H., Boomsma, D. I., Stubbe, J. H., Willemsen, G. & de Geus, E. J. Testing causality in the association between regular exercise and symptoms of anxiety and depression. Arch. Gen. Psychiatry 65, 897–905 (2008).

    Article  PubMed  Google Scholar 

  25. Ligthart, L., Nyholt, D. R., Penninx, B. W. & Boomsma, D. I. The shared genetics of migraine and anxious depression. Headache 50, 1549–1560 (2010).

    Article  PubMed  Google Scholar 

  26. Lundqvist, E. et al. Co-twin control and cohort analyses of body mass index and height in relation to breast, prostate, ovarian, corpus uteri, colon and rectal cancer among Swedish and Finnish twins. Int. J. Cancer 121, 810–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Bell, J. T. & Spector, T. D. A twin approach to unraveling epigenetics. Trends Genet. 27, 116–125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005). This is the first study indicating that epigenetic profiles of older MZ twins are less similar than those of young MZ twins based on a comparison of global and locus-specific DNA methylation and histone acetylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Talens, R. P. et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 23 May 2012 (doi:10.1111/j.1474-9726.2012.00835.x).

    Article  CAS  PubMed  Google Scholar 

  30. Wong, C. C. et al. A longitudinal study of epigenetic variation in twins. Epigenetics 5, 516–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gordon, L. et al. Expression discordance of monozygotic twins at birth: effect of intrauterine environment and a possible mechanism for fetal programming. Epigenetics 6, 579–592 (2011).

    Article  PubMed  Google Scholar 

  32. Ollikainen, M. et al. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum. Mol. Genet. 19, 4176–4188 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Powell, J. E. et al. Genetic control of gene expression in whole blood and lymphoblastoid cell lines is largely independent. Genome Res. 22, 456–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hjelmborg, J. B. et al. Genetic influence on human lifespan and longevity. Hum. Genet. 119, 312–321 (2006). This paper describes a study of survival in a large sample of twins, showing that genetic influences on human lifespan are of little importance until the age of 60 but that genes explain an important part of the variation at advanced ages.

    Article  Google Scholar 

  35. Bakaysa, S. L. et al. Telomere length predicts survival independent of genetic influences. Aging Cell 6, 769–774 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Zwijnenburg, P. J. G., Meijers Heijboer, H. & Boomsma, D. I. Identical but not the same: the value of discordant monozygotic twins in genetic research. Am. J. Med. Genet. B 153, 1134–1149 (2010). This review provides an overview of studies of MZ twins who are discordant for chromosomal abnormalities, Mendelian disorders and other genetic disorders.

    Google Scholar 

  37. Forsberg, L. A. et al. Age-related somatic structural changes in the nuclear genome of human blood cells. Am. J. Hum. Genet. 90, 217–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ehli, E. A. et al. De novo and inherited CNVs in MZ twin pairs selected for discordance and concordance on attention problems. Eur. J. Hum. Genet. 11 Apr 2012 (doi: 10.1038/ejhg.2012.49).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veenma, D. et al. Copy number detection in discordant monozygotic twins of congenital diaphragmatic hernia (CDH) and esophageal atresia (EA) cohorts. Eur. J. Hum. Genet. 20, 298–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nature Rev. Genet. 12, 363–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Baranzini, S. E. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464, 1351–1356 (2010). This paper describes a study of female MZ twins who are discordant for multiple sclerosis, and it was the first to report the individual genome sequences of an MZ twin pair based on whole-genome sequencing technology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nature Rev. Genet. 13, 565–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Vadlamudi, L. et al. Timing of de novo mutagenesis: a twin study of sodium-channel mutations. N. Engl. J. Med. 363, 1335–1340 (2010). This paper describes a study that sequenced SCN1A in multiple cell lines from MZ twin pairs who are concordant and discordant for Dravet's syndrome to obtain insight into the timing of disease-causing de novo mutations.

    Article  CAS  PubMed  Google Scholar 

  44. Oates, N. A. et al. Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am. J. Hum. Genet. 79, 155–162 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mastroeni, D., McKee, A., Grover, A., Rogers, J. & Coleman, P. D. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS ONE 4, e6617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen, A., Rauch, T. A., Pfeifer, G. P. & Hu, V. W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 24, 3036–3051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuratomi, G. et al. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol. Psychiatry 13, 429–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Rosa, A. et al. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am. J. Med. Genet. B 147, 459–462 (2008).

    Article  Google Scholar 

  49. Gao, Y. et al. Increased expression and altered methylation of HERVWE1 in the human placentas of smaller fetuses from monozygotic, dichorionic, discordant twins. PLoS ONE 7, e33503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galetzka, D. et al. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics 7, 47–54 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gervin, K. et al. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet. 8, e1002454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heijmans, B. T., Kremer, D., Tobi, E. W., Boomsma, D. I. & Slagboom, P. E. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum. Mol. Genet. 16, 547–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Coolen, M. W. et al. Impact of the genome on the epigenome is manifested in DNA methylation patterns of imprinted regions in monozygotic and dizygotic twins. PLoS ONE 6, e25590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gertz, J. et al. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet. 7, e1002228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaminsky, Z. A. et al. DNA methylation profiles in monozygotic and dizygotic twins. Nature Genet. 41, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Amaral, P. P., Dinger, M. E., Mercer, T. R. & Mattick, J. S. The eukaryotic genome as an RNA machine. Science 319, 1787–1789 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell. Biol. 6, 376–385 (2005).

    Article  CAS  Google Scholar 

  58. Mattick, J. S. & Makunin, I. V. Non-coding RNA. Hum. Mol. Genet. 15 (Suppl. 1), R17–R29 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sarachana, T., Zhou, R., Chen, G., Manji, H. K. & Hu, V. W. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2, 23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Te, J. L. et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS ONE 5, e10344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tan, Q. et al. Genetic dissection of gene expression observed in whole blood samples of elderly Danish twins. Hum. Genet. 117, 267–274 (2005).

    Article  PubMed  Google Scholar 

  62. Nica, A. C. et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet. 7, e1002003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pietiläinen, K. H. et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 5, e51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Haas, C. S. et al. Identification of genes modulated in rheumatoid arthritis using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordant monozygotic twins. Arthritis Rheum. 54, 2047–2060 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Matigian, N. et al. Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol. Psychiatry 12, 815–825 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Kakiuchi, C. et al. Upregulation of ADM and SEPX1 in the lymphoblastoid cells of patients in monozygotic twins discordant for schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147, 557–564 (2008).

    Article  CAS  Google Scholar 

  67. Beyan, H. et al. Monocyte gene-expression profiles associated with childhood-onset type 1 diabetes and disease risk: a study of identical twins. Diabetes 59, 1751–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caramori, M. L. et al. Gene expression differences in skin fibroblasts in identical twins discordant for type 1 diabetes. Diabetes 61, 739–744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ronkainen, P. H. et al. Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs. J. Appl. Physiol. 107, 25–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W. & Goodacre, R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8, 1243–1266 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Nicholson, G. et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol. Syst. Biol. 7, 525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genet. 44, 269–276 (2012). This was a genome-wide association study of 216 serum metabolites that used twin data to compare the total heritability of each metabolite to the total genetic variance explained by significantly associated SNPs.

    Article  CAS  PubMed  Google Scholar 

  73. Nicholson, G. et al. A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genet. 7, e1002270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pietiläinen, K. H. et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects — a monozygotic twin study. PLoS ONE 2, e218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pietiläinen, K. H. et al. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. PLoS Biol. 9, e1000623 (2011). This paper describes a simulation of adipocyte membrane dynamics related to obesity, based on differences in lipid content and differential gene expression detected in discordant monozygotic twins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kato, B. S. et al. Variance decomposition of protein profiles from antibody arrays using a longitudinal twin model. Proteome Sci. 9, 73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dempster, E. L. et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 20, 4786–4796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Dijk, B. A., Boomsma, D. I. & de Man, A. J. Blood group chimerism in human multiple births is not rare. Am. J. Med. Genet. 61, 264–268 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Laborie, L. B. et al. DNA hypomethylation, transient neonatal diabetes, and prune belly sequence in one of two identical twins. Eur. J. Pediatr. 169, 207–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Erlich, Y. Blood ties: chimerism can mask twin discordance in high-throughput sequencing. Twin Res. Hum. Genet. 14, 137–143 (2011).

    Article  PubMed  Google Scholar 

  81. Scheet, P. et al. Twins, tissue and time: a comparison of genomic structures. Twin Res. Hum. Genet. (in the press).

  82. Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Rev. Microbiol. 9, 279–290 (2011).

    Article  CAS  Google Scholar 

  83. Stewart, J. A., Chadwick, V. S. & Murray, A. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J. Med. Microbiol. 54, 1239–1242 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Zoetendal, E. G., Akkermans, A. D. L., Akkermans-van Vliet, W. M., de Visser, J. A. G. M. & de Vos, W. M. The host genotype affects the bacterial community in the human gastronintestinal tract. Microb. Ecol. Health Dis. 13, 129–134 (2001).

    Article  Google Scholar 

  85. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2008). This paper describes a comparison of faecal microbial communities in monozygotic and dizygotic twins who are concordant for leanness or obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854 (2010).

    Article  PubMed  Google Scholar 

  87. Lepage, P. et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141, 227–236 (2011).

    Article  PubMed  Google Scholar 

  88. Kendler, K. S. & Eaves, L. J. Models for the joint effect of genotype and environment on liability to psychiatric illness. Am. J. Psychiatry 143, 279–289 (1986).

    Article  CAS  PubMed  Google Scholar 

  89. Stubbe, J. H. et al. Genetic influences on exercise participation in 37.051 twin pairs from seven countries. PLoS ONE 1, e22 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Teucher, B. et al. Dietary patterns and heritability of food choice in a UK female twin cohort. Twin Res. Hum. Genet. 10, 734–748 (2007).

    Article  PubMed  Google Scholar 

  91. Middeldorp, C. M., Cath, D. C., Vink, J. M. & Boomsma, D. I. Twin and genetic effects on life events. Twin Res. Hum. Genet. 8, 224–231 (2005).

    Article  PubMed  Google Scholar 

  92. Kendler, K. S. & Baker, J. H. Genetic influences on measures of the environment: a systematic review. Psychol. Med. 37, 615–626 (2007).

    Article  PubMed  Google Scholar 

  93. Vinkhuyzen, A. A. E., Van Der Sluis, S., De Geus, E. J. C., Boomsma, D. I. & Posthuma, D. Genetic influences on 'environmental' factors. Genes Brain Behav. 9, 276–287 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Caspi, A. & Moffitt, T. E. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nature Rev. Neurosci. 7, 583–590 (2006).

    Article  CAS  Google Scholar 

  95. Caspi, A. et al. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc. Natl Acad. Sci. USA 104, 18860–18865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Berg, K. Variability gene effect on cholesterol at the Kidd blood group locus. Clin. Genet. 33, 102–107 (1988).

    Article  CAS  PubMed  Google Scholar 

  97. Wray, N. R. et al. Use of monozygotic twins to investigate the relationship between 5HTTLPR genotype, depression and stressful life events: an application of item response theory. Novartis Found. Symp. 293, 48–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era: concepts and misconceptions. Nature Rev. Genet. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Visscher, P. M. et al. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am. J. Med. Genet. 81, 1104–1110 (2007).

    CAS  Google Scholar 

  100. Jörgensen, G. in Erbgefüge (ed. Vogel, F.) 581–665 (Springer, 1974).

    Book  Google Scholar 

  101. Smith, C. Heritability of liability and concordance in monozygous twins. Ann. Hum. Genet. 34, 85–91 (1970).

    Article  CAS  PubMed  Google Scholar 

  102. Tazi, L. et al. HIV-1 infected monozygotic twins: a tale of two outcomes. BMC Evol. Biol. 11, 62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ott, J., Kamatani, Y. & Lathrop, M. Family-based designs for genome-wide association studies. Nature Rev. Genet. 12, 465–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Galton, F. The history of twins, as a criterion of the relative powers of nature and nurture. J. Anthropol. Institute Great Britain Ireland 5, 391–406 (1876).

    Article  Google Scholar 

  105. Mayo, O. Early research on human genetics using the twin method: who really invented the method? Twin Res. Hum. Genet. 12, 237–245 (2009).

    Article  PubMed  Google Scholar 

  106. Siemens, H. W. Die Zwillingspathologie. Mol. Gen. Genet. 35, 311–312 (1924).

    Article  Google Scholar 

  107. Zhu, G. et al. A genome-wide scan for naevus count: linkage to CDKN2A and to other chromosome regions. Eur. J. Hum. Genet. 15, 94–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Jinks, J. L. & Fulker, D. W. Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of the human behavior. Psychol. Bull. 73, 311–349 (1970). This is a classical paper that describes the application of the biometrical genetic approach initiated by R. A. Fisher to the analysis of twin and family data.

    Article  CAS  PubMed  Google Scholar 

  109. Martin, N. G., Eaves, L. J., Kearsey, M. J. & Davies, P. The power of the classical twin study. Heredity 40, 97–116 (1978).

    Article  CAS  PubMed  Google Scholar 

  110. Boomsma, D. I. Twin registers in Europe: An overview. Twin Res. 1, 34–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Busjahn, A. & Hur, Y. M. Twin registries: an ongoing success story. Twin Res. Hum. Genet. 9, 705 (2006).

    Article  PubMed  Google Scholar 

  112. Peltonen, L. GenomEUtwin: a strategy to identify genetic influences on health and disease. Twin Res. 6, 354–360 (2003).

    Article  PubMed  Google Scholar 

  113. Llewellyn, C. H., van Jaarsveld, C. H., Johnson, L., Carnell, S. & Wardle, J. Nature and nurture in infant appetite: analysis of the Gemini twin birth cohort. Am. J. Clin. Nutr. 91, 1172–1179 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000). In this study, twin data from Scandinavian twin registries were linked to national health records of cancer diagnosis to obtain heritability estimates for various types of cancer based on large twin samples.

    Article  CAS  PubMed  Google Scholar 

  115. Vink, J. M. et al. Cervix smear abnormalities: linking pathology data in female twins, their mothers and sisters. Eur. J. Hum. Genet. 19, 108–111 (2011).

    Article  PubMed  Google Scholar 

  116. De Geus, E. J. C. Introducing genetic psychophysiology. Biol. Psychol. 61, 1–10 (2002).

    Article  PubMed  Google Scholar 

  117. Mattay, V. S., Goldberg, T. E., Sambataro, F. & Weinberger, D. R. Neurobiology of cognitive aging: insights from imaging genetics. Biol. Psychol. 79, 9–22 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Peper, J. S., Brouwer, R. M., Boomsma, D. I., Kahn, R. S. & Hulshoff Pol, H. E. Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum. Brain Mapp. 28, 464–473 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Van Beijsterveldt, C. E. M. & Van Baal, G. C. M. Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol. Psychol. 61, 111–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Koten, J. W. et al. Genetic contribution to variation in cognitive function: an fMRI study in twins. Science 323, 1737–1740 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. van der Schot, A. C. et al. Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch. Gen. Psychiatry 66, 142–151 (2009).

    Article  PubMed  Google Scholar 

  122. De Geus, E. J. C. et al. Intrapair differences in hippocampal volume in monozygotic twins discordant for the risk for anxiety and depression. Biol. Psychiatry 61, 1062–1071 (2007).

    Article  PubMed  Google Scholar 

  123. Falconer, D. S. Introduction to Quantitative Genetics (Ronald Press Co., 1960).

    Google Scholar 

  124. Tsang, T. M., Huang, J. T., Holmes, E. & Bahn, S. Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients. J. Proteome Res. 5, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Harder, A. et al. Monozygotic twins with neurofibromatosis type 1 (NF1) display differences in methylation of NF1 gene promoter elements, 5′untranslated region, exon and intron 1. Twin Res. Hum. Genet. 13, 582–594 (2010).

    Article  PubMed  Google Scholar 

  126. Silventoinen, K. et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 6, 399–408 (2003).

    Article  PubMed  Google Scholar 

  127. Schousboe, K. et al. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res. 6, 409–421 (2003).

    Article  PubMed  Google Scholar 

  128. Clausson, B., Lichtenstein, P. & Cnattingius, S. Genetic influence on birthweight and gestational length determined by studies in offspring of twins. BJOG 107, 375–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Hyttinen, V., Kaprio, J., Kinnunen, L., Koskenvuo, M. & Tuomilehto, J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs. Diabetes 52, 1052–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Kaprio, J. et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 35, 1060–1067 (1992).

    Article  CAS  PubMed  Google Scholar 

  131. Zdravkovic, S. et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J. Intern. Med. 252, 247–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, S. et al. Genetic and environmental contributions to phenotypic components of metabolic syndrome: a population-based twin study. Obesity 17, 1581–1587 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Rahman, I. et al. Genetic dominance influences blood biomarker levels in a sample of 12,000 Swedish elderly twins. Twin Res. Hum. Genet. 12, 286–294 (2009).

    Article  PubMed  Google Scholar 

  134. Pedersen, N. L., Gatz, M., Berg, S. & Johansson, B. How heritable is Alzheimer's disease late in life? Findings from Swedish twins. Ann. Neurol. 55, 180–185 (2004).

    Article  PubMed  Google Scholar 

  135. Wirdefeldt, K., Gatz, M., Reynolds, C. A., Prescott, C. A. & Pedersen, N. L. Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol. Aging 32, 1923–1928 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Mulder, E. J. et al. Genetic and environmental influences on migraine: a twin study across six countries. Twin Res. 6, 422–431 (2003).

    Article  PubMed  Google Scholar 

  137. Hawkes, C. H. & MacGregor, A. J. Twin studies and the heritability of MS: a conclusion. Mult. Scler. 15, 661–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Faraone, S. V. et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1313–1323 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Lundstrom, S. et al. Autism spectrum disorders and autistic like traits: similar etiology in the extreme end and the normal variation. Arch. Gen. Psychiatry 69, 46–52 (2012).

    Article  PubMed  Google Scholar 

  140. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

    Article  PubMed  Google Scholar 

  141. Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–1562 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Peacock, M., Turner, C. H., Econs, M. J. & Foroud, T. Genetics of osteoporosis. Endocr. Rev. 23, 303–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Spector, T. D. & MacGregor, A. J. Risk factors for osteoarthritis: genetics. Osteoarthr. Cartil. 12 (Suppl. 1), 39–44 (2004).

    Article  Google Scholar 

  144. MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Thomsen, S. F., Van Der Sluis, S., Kyvik, K. O., Skytthe, A. & Backer, V. Estimates of asthma heritability in a large twin sample. Clin. Exp. Allergy 40, 1054–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Ingebrigtsen, T. S. et al. Genetic influences on pulmonary function: a large sample twin study. Lung 189, 323–330 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Li, M. D., Cheng, R., Ma, J. Z. & Swan, G. E. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98, 23–31 (2003).

    Article  PubMed  Google Scholar 

  148. Agrawal, A. & Lynskey, M. T. Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 103, 1069–1081 (2008).

    Article  PubMed  Google Scholar 

  149. Willer, C. J., Dyment, D. A., Risch, N. J., Sadovnick, A. D. & Ebers, G. C. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc. Natl Acad. Sci. USA 100, 12877–12882 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Halfvarson, J. Genetics in twins with Crohn's disease: less pronounced than previously believed? Inflamm. Bowel Dis. 17, 6–12 (2011).

    Article  PubMed  Google Scholar 

  151. Tanner, C. M. et al. Parkinson disease in twins. JAMA 281, 341–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Cardno, A. G. et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch. Gen. Psychiatry 56, 162–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Kendler, K. S. & Prescott, C. A. A population-based twin study of lifetime major depression in men and women. Arch. Gen. Psychiatry 56, 39–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Levy, F., Hay, D. A., McStephen, M., Wood, C. & Waldman, I. Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study. J. Am. Acad. Child Adolesc. Psychiatry 36, 737–744 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Rosenberg, R. E. et al. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 163, 907–914 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC 230374) and the Institute for Health and Care Research (EMGO+).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorret I. Boomsma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Twin registries worldwide (PDF 181 kb)

Related links

Related links

FURTHER INFORMATION

Dorret I. Boomsma's homepage

Australian Twin Registry

Integrated Research on Developmental Determinants of Ageing and Longevity (IDEAL)

Netherlands Consortium for Healthy Ageing

Queensland Twin Registry

Glossary

Classical twin design

The approach used to estimate the importance of genetic and environmental influences on complex trait variation. The estimate of heritability is based on a comparison of resemblence in monozygotic twins (who share all segregating genetic material) and dizygotic twins (who share, on average, half of their segregating genetic material).

Heritability

The proportion of variation in a trait that is due to heritable differences between individuals in a population: that is, the proportion of variation due to additive genetic effects (that is, narrow-sense heritability) or the proportion of variation due to all genetic effects (that is, broad-sense heritability).

Discordant monozygotic twins

(Discordant MZ twins). Twins who derive from a single fertilized egg cell but who are dissimilar for a certain characteristic or disease. By contrast, concordant MZ twins are phenotypically similar.

Case–control study

The comparison of individuals with a trait or disease of interest (cases) to controls to identify genes or other aspects associated with the trait. Cases and controls can be unrelated or can be relatives (within-family case–control design).

Epigenome

The entire collection of epigenetic marks, including DNA methylation and histone modifications, that regulate the expression of the genome. In contrast to the genome, the epigenome is specific to each cell.

Transcriptome

The total set of RNA transcripts that are produced in a cell or tissue by transcription of DNA.

Metabolome

The total set of small molecules (for example, lipids, amino acids and sugars) that are the reactants, intermediates or end products of cellular metabolism and that are present in a cell, tissue or complete organism.

Proteome

The entire complement of proteins that are present in a cell, tissue or complete organism.

Microbiome

The entire set of genomes of microorganisms (for example, bacteria, fungi and viruses) that are present in a certain environment: for example, in the human gut.

Variability genes

Genes that contribute to the variation in a phenotype. The genotypes are associated with phenotypic variance rather than with the mean level or frequency of the trait.

Zygosity assessment

The assessment whether same-sex twins are monozygotic or dizygotic is often based on the comparison of DNA markers or alternatively on standardized questionnaires.

Multivariate twin models

Models used for the simultaneous analysis of multiple traits measured in monozygotic and dizygotic twins to estimate the importance of genetic and environmental influences shared ('overlapping') between traits in explaining their clustering, comorbidity or covariance.

Genetic non-additivity

Refers to genetic effects that contribute to the phenotypic variance in a non-additive manner. These include the effects of interacting alleles at a single locus (dominance) and interactions between different loci (epistasis).

Assortative mating

Refers to the situation whereby a trait is correlated in spouses because it influences partner choice (phenotypic assortment) or because it correlates with certain environments that influence partner choice (social homogamy). It is also called nonrandom mating.

Maternal effects

Effects that are transmitted from mother to offspring, including genetic effects. The phenotype in offspring can be influenced by: the maternal allele, mitochondrial inheritance, the effects of the prenatal environment (for example, nutrient supply in utero) or the maternal supply of RNA or proteins to the egg cell.

Co-twin control method

A method of examining the associations between traits using discordant twins. If monozygotic twins who are discordant for trait 1 are also discordant for trait 2, the association between these traits is unlikely to be confounded by underlying shared genetic or early environmental influences.

Transgenerational inheritance

The transmission of a trait across generations (genetic or cultural inheritance). Epigenetic variation may also be transmitted across generations.

Imprinting

The mechanism that can occur at some loci to silence the expression of one of the two alleles, depending on the parent-of-origin of the allele.

Copy number variations

(CNVs). These refer to large DNA segments (> 1 kb) of which the number of copies is variable (for example, between individuals or between cells within an individual) — for example insertions, deletions and duplications.

Congenital diaphragmatic hernia

A birth defect that is characterized by malformation of the diaphragm, lung hypoplasia and pulmonary hypertension.

Oesophageal atresia

A congenital malformation of the oesophagus in which the oesophagus does not form an open passage to the stomach and may be connected to the trachea.

Maximum likelihood

Maximum-likelihood estimation obtains estimates of population parameters from a data set by computing the probability (likehood) of obtaining the observed data for a range of different parameter values and evaluating for which values the probability of observing the data is highest.

Dravet's syndrome

A childhood-onset epileptic encephalopathy that is also called severe myoclonic epilepsy of infancy.

Mosaicism

The situation in which the tissue of an individual consists of two or more genetically distinct cell lines owing to somatic mutation but originally derived from one (genetically homogeneous) zygote.

Non-coding RNAs

RNA transcripts that are not translated into protein but probably serve a regulatory function.

MicroRNAs

(miRNAs). A type of non-coding RNA with an average length of 22 nucleotides that has been suggested to have an important role in post-transcriptional gene regulation networks.

Lymphoblastoid cell lines

Cell lines derived from lymphocytes that have been immortalized, cultured and stored to provide a renewable source of DNA and RNA.

Interferon signalling

(IFN signalling). A signalling system for communication between cells that is involved in the immune response to pathogens and tumours.

Expression quantitative trait loci

(eQTLs). Genomic regions that are associated with the level of expression of an RNA transcript. eQTLs can be tissue-specific.

Mass spectrometry

A technique for determining the mass-to-charge ratio of ions on the basis of their separation in an electromagnetic field. The measured ratios and their relative intensities provide information about both the identity and the abundance of the molecules that gave rise to the ions.

1H NMR spectroscopy

A metabolomics technique that provides information about the structure and quantity of hydrogen-containing molecules. It is based on the absorption and emittance of radiofrequency energy by hydrogen atoms when placed in a strong magnetic field, with wavelengths depending on the atoms' position in the molecule.

Lipid bilayer dynamics

The dynamic properties of lipid bilayer membranes, such as thickness, fluidity and permeability, that influence the physiological properties of a cell.

Lipidomics

The comprehensive study of the entire set of lipids in biological systems, such as cells, tissues and organs, using metabolomics techniques.

Chimerism

The situation in which an individual carries some of the genetic material originating from another individual (for example, originating from the co-twin or originating from the mother).

Microbiota

The collection of all microorganisms living in a certain environment (for example, the human gut).

Identity-by-descent sharing

(IBD sharing). Refers to the proportion of alleles in two individuals that are derived identically by descent from a common ancestor.

Monochorionic

Describes twins who share the outer membrane (chorion) surrounding the embryos in utero. Monochorionic monozygotic twins result when the zygote splits ≥3 days after fertilization.

Dichorionic

Describes twins who do not share the chorion surrounding the embryos in utero. Dizygotic twins are always dichorionic. Dichorionic monozygotic twins result when the zygote splits early after fertilization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dongen, J., Slagboom, P., Draisma, H. et al. The continuing value of twin studies in the omics era. Nat Rev Genet 13, 640–653 (2012). https://doi.org/10.1038/nrg3243

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3243

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research