Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

The place of genetics in ageing research

Abstract

Rapidly increasing numbers of older people present many countries with growing social and economic challenges. Yet despite the far-reaching implications of ageing, its biological basis remains a topic of much debate. Recent advances in genomics have spurred research on ageing and lifespan in human populations, adding to extensive genetic studies being carried out in model organisms. But how far is ageing controlled by our genes? In this Viewpoint, six experts present their opinions and comment on future directions in ageing research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barzilai, N. & Bartke, A. Biological approaches to mechanistically understand the healthy life span extension achieved by calorie restriction and modulation of hormones. J. Gerontol. A Biol. Sci. Med. Sci. 64, 187–191 (2009).

    Article  PubMed  Google Scholar 

  2. Finch, C. E. & Ruvkun, G. The genetics of aging. Annu. Rev. Genom. Hum. Genet. 2, 435–462 (2001).

    Article  CAS  Google Scholar 

  3. Kenyon, C. J. The genetics of aging. Nature 464, 504–512 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Gurland, B. J., Page, W. F. & Plassman, B. L. A twin study of the genetic contribution to age-related functional impairment. J. Gerontol. A Biol. Sci. Med. Sci. 59, 859–863 (2004).

    Article  PubMed  Google Scholar 

  5. Barzilai, N. et al. Genetic studies reveal the role of the endocrine and metabolic systems in aging. J. Clin. Endocrinol. Metab. 95, 4493–4500 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Guarente, L. Sirtuins, aging, and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 81–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Christensen, K., Johnson, T. E. & Vaupel, J. W. The quest for genetic determinants of human longevity: challenges and insights. Nature Rev. Genet. 7, 436–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Kirkwood, T. B. L. & Melov, S. On the programmed/non-programmed nature of ageing within the life history. Curr. Biol. 21, R701–R707 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Kirkwood, T. B. L. & Austad, S. N. Why do we age? Nature 408, 233–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Anson, R. M., Willcox, B., Austad, S. & Perls, T. Within- and between-species study of extreme longevity—comments, commonalities, and goals. J. Gerontol. A Biol. Sci. Med. Sci. 67, 347–350 (2012).

    Article  PubMed  Google Scholar 

  15. Soerensen, M. et al. Evidence from case-control & longitudinal studies supports associations of genetic variation in APOE, CETP & IL6 with human longevity. Age 12 Jan 2012 (doi:10.1007/s11357-011-9373-7).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span—from yeast to humans. Science. 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Talens, R. P. et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 23 May 2012 (doi:10.1111/j.1474-9726.2012.00835.x).

    Article  CAS  PubMed  Google Scholar 

  18. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  20. Austad, S. N. Is aging programed? Aging Cell 3, 249–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Finch, C. E. Variations in senescence and longevity include the possibility of negligible senescence. J. Gerontol. A Biol. Sci. Med. Sci. 53, B235–B239 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kirkwood, T. B. et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? Mech. Ageing Dev. 126, 439–443 (2005).

    Article  PubMed  Google Scholar 

  24. Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Herskind, A. M. et al. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum. Genet. 97, 319–323 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Perls, T. T. et al. Siblings of centenarians live longer. Lancet. 23, 1560 (1998).

    Article  Google Scholar 

  28. Westendorp, R. G. et al. Leiden longevity study group. Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: the Leiden longevity study. J. Am. Geriatr. Soc. 57, 1634–1637 (2009).

    Article  PubMed  Google Scholar 

  29. Wijsman, C. A. et al. Familial longevity is marked by enhanced insulin sensitivity. Aging Cell. 10, 114–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Suh, Y. et al. Functionally-significant insulin-like growth factor-I receptor mutations in centenarian. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perls, T. T. et al. Life-long sustained mortality advantage of siblings of centenarians. Proc. Natl Acad. Sci. USA 99, 8442–8447 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rajpathak, S. N. et al. Lifestyle factors of people with exceptional longevity. J. Am. Geriatr. Soc. 59, 1509–1512 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beekman, M. et al. Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc. Natl Acad. Sci. USA 107, 18046–18049 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barzilai, N. et al. Unique lipoprotein phenoytype and genotype associated with exceptional longevity. JAMA 290, 2030–2040 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Lucchi, T. et al. I405V polymorphism of the cholesteryl ester transfer protein gene in young and very old individuals. Ann. Ital. Med. Int. 20, 45–50 (2005).

    PubMed  Google Scholar 

  36. Sanders, A. E. et al. Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA 303, 150–158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccaharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Price, N. L. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell. Metab. 15, 675–690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kirkwood, T. B. L. A systematic look at an old problem. Nature 451, 644–647 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kirkwood, T. B. L. Systems biology of ageing and longevity. Phil. Trans. R. Soc. B 366, 64–70 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Systems Biol. 6, 347 (2010).

    Article  Google Scholar 

  43. Kirkwood, T. B. L., Cordell, H. J. & Finch, C. E. Speed-bumps ahead for the genetics of later-life diseases. Trends Genet. 27, 387–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Selman, C. et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807–818 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science. 326, 140–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soerensen, M. et al. Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies. Exp. Gerontol. 47, 379–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murphy, J. C. et al. Preferential reductions in intermuscular and visceral adipose tissue with exercise-induced weight loss compared with calorie restriction. J. Appl. Physiol. 112, 79–85 (2012).

    Article  PubMed  Google Scholar 

  49. Martin, G. M. The biology of aging: 1985–2010 and beyond. FASEB J. 25, 3756–3762 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Remolina, S. C. & Hughes, K. A. Evolution and mechanisms of long life and high fertility in queen honey bees. Age 30, 177–185 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Friedman, D. B. & Johnson, T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    CAS  PubMed  Google Scholar 

  53. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Willcox, B. J. et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl Acad. Sci. USA 105, 13987–13992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deelen, J. et al. Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell. 10, 686–698 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Skytthe, A. et al. Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project. Exp. Gerontol. 46, 934–945 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bekris, L. M., Lutz, F. & Yu, C. E. Functional analysis of APOE locus genetic variation implicates regional enhancers in the regulation of both TOMM40 and APOE. Hum. Genet. 57, 18–25 (2012).

    Article  CAS  Google Scholar 

  58. Yang J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Deelen, J. et al. Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways. Age 24 Nov 2011 (doi:10.1007/s11357-011-934020113).

  61. Beekman, M. et al. Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc. Natl Acad. Sci. USA 107, 18046–18049 (2011).

    Article  Google Scholar 

  62. Passtoors, W. M. et al. Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R. PLoS ONE 7, e27759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nir Barzilai, Leonard Guarente, Thomas B. L. Kirkwood, Linda Partridge, Thomas A. Rando or P. Eline Slagboom.

Ethics declarations

Competing interests

Leonard Guarente is Chair of the scientific advisory board of Sirtris Pharmaceuticals. Nir Barzilai, Thomas B. L. Kirkwood, Linda Partridge, Thomas A. Rando and P. Eline Slagboom declare no competing financial interests.

Related links

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barzilai, N., Guarente, L., Kirkwood, T. et al. The place of genetics in ageing research. Nat Rev Genet 13, 589–594 (2012). https://doi.org/10.1038/nrg3290

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing