Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Studying and modelling dynamic biological processes using time-series gene expression data

Key Points

  • Studying time-series gene expression enables the identification of transient transcriptional changes, temporal patterns of a response and causal relationships between genes.

  • Experimental design and data processing methods — including sampling rates, synchronization, normalization and the identification of differentially expressed genes — should take into account the temporal aspects of the experiments.

  • Splines and other continuous representations of temporal gene expression support more sophisticated analyses as well as statistical methods for detecting differentially expressed genes.

  • Categories of time-series experiments include the response to an external signal, developmental processes and cyclic processes. Each type of experiment has a characteristic outcome: transient responses, fate switches and cyclic expression patterns, respectively.

  • Temporal data sets measuring transcriptional factor occupancy and histone modifications complement dynamic gene expression data, leading to improved biological models.

  • Computational techniques can integrate time-series gene expression data with other types of static and temporal high-throughput biological data to reconstruct dynamic regulatory networks.

  • Time-series gene expression studies in the clinical setting can be used to predict phenotypic outcome, but have a unique set of challenges regarding experimental design and computational analysis.

  • Several additional types of time-series expression data sets, including single-cell measurements and data from next-generation sequencing technologies, will provide new opportunities while also raising new computational analysis challenges.

Abstract

Biological processes are often dynamic, thus researchers must monitor their activity at multiple time points. The most abundant source of information regarding such dynamic activity is time-series gene expression data. These data are used to identify the complete set of activated genes in a biological process, to infer their rates of change, their order and their causal effects and to model dynamic systems in the cell. In this Review we discuss the basic patterns that have been observed in time-series experiments, how these patterns are combined to form expression programs, and the computational analysis, visualization and integration of these data to infer models of dynamic biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational workflow for time-series gene expression data.
Figure 2: Patterns of gene expression.
Figure 3: Identifying transcription factor dynamics with DREM.

Similar content being viewed by others

References

  1. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res. 39, D1005–D1010 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000). An extensive study of the yeast response to various stresses, which revealed a large set of general environmental stress response genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chechik, G. et al. Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nature Biotech. 26, 1251–1259 (2008).

    Article  CAS  Google Scholar 

  4. Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet. 39, 503–512 (2007). This study used a clever design strategy to sample and integrate temporal immune response data. It identified several cascades that are activated as part of mammalian immune response.

    Article  CAS  PubMed  Google Scholar 

  5. Zinman, G. et al. Large scale comparison of innate responses to viral and bacterial pathogens in mouse and macaque. PLoS ONE 6, e22401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang, F., Lao, K. & Surani, M. A. Development and applications of single-cell transcriptome analysis. Nature Methods 8, S6–S11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Locke, J. C. W. & Elowitz, M. B. Using movies to analyse gene circuit dynamics in single cells. Nature Rev. Microbiol. 7, 383–392 (2009).

    Article  CAS  Google Scholar 

  8. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, Y. et al. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza A infection. PLoS Genet. 7, e1002234 (2011). An experimental and computational analysis of influenza infection in human volunteers that identified dynamic expression patterns that discriminate symptomatic and asymptomatic reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arbeitman, M. N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275 (2002). One of the first developmental studies using time-series expression data. It identified several cascades of genes that are expressed during fly development.

    Article  CAS  PubMed  Google Scholar 

  11. Mathavan, S. et al. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet. 1, 260–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roy, S. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010). A comprehensive study of fly development that collected and integrated several types of temporal and static omics data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998). Among the first studies of cyclic responses using time-series experiments. It identified a large set of yeast cycling genes and it served as the basis for several computational methods that have been developed to study such data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Menges, M., Hennig, L., Gruissem, W. & Murray, J. A. H. Cell cycle-regulated gene expression in Arabidopsis. J. Biol. Chem. 277, 41987–42002 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rustici, G. et al. Periodic gene expression program of the fission yeast cell cycle. Nature Genet. 36, 809–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Bar-Joseph, Z. et al. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc. Natl Acad. Sci. USA 105, 955–960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McDonald, M. J. & Rosbash, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Schaffer, R. et al. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113–123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Storch, K.-F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Pauli, A. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22, 577–591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Otto, T. D. et al. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol. Microbiol. 76, 12–24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  25. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotech. 29, 644–652 (2011).

    Article  CAS  Google Scholar 

  26. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelley, D. R., Schatz, M. C. & Salzberg, S. L. Quake: quality-aware detection and correction of sequencing errors. Genome Biol. 11, R116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shalem, O. et al. Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol. Syst. Biol. 4, 223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Li, C. & Hung Wong, W. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2, RESEARCH0032 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ernst, J. et al. IL-3 and oncogenic Abl regulate the myeloblast transcriptome by altering mRNA stability. PLoS ONE 4, e7469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bar-Joseph, Z., Gerber, G., Simon, I., Gifford, D. K. & Jaakkola, T. S. Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc. Natl Acad. Sci. USA 100, 10146–10151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bar-Joseph, Z., Gerber, G. K., Gifford, D. K., Jaakkola, T. S. & Simon, I. Continuous representations of time-series gene expression data. J. Comput. Biol. 10, 341–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kaminski, N. & Bar-Joseph, Z. A patient-gene model for temporal expression profiles in clinical studies. J. Comput. Biol. 14, 324–338 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Calvano, S. E. et al. A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, R. et al. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462, 358–362 (2009). This study measured several types of temporal high-throughput data sets in stem cell differentiation. It determined that correlation between dynamic protein and mRNA expression levels is lower than was previously thought.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nau, G. J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl Acad. Sci. USA 99, 1503–1508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shapira, S. D. et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139, 1255–1267 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Storey, J. D., Xiao, W., Leek, J. T., Tompkins, R. G. & Davis, R. W. Significance analysis of time course microarray experiments. Proc. Natl Acad. Sci. USA 102, 12837–12842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aryee, M. J., Gutiérrez-Pabello, J. A., Kramnik, I., Maiti, T. & Quackenbush, J. An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinformatics 10, 409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramoni, M. F., Sebastiani, P. & Kohane, I. S. Cluster analysis of gene expression dynamics. Proc. Natl Acad. Sci. USA 99, 9121–9126 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schliep, A., Schönhuth, A. & Steinhoff, C. Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19, i255–i263 (2003).

    Article  PubMed  Google Scholar 

  45. Ernst, J., Nau, G. J. & Bar-Joseph, Z. Clustering short time series gene expression data. Bioinformatics 21, i159–i168 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Baranzini, S. E. et al. Transcription-based prediction of response to IFNβ using supervised computational methods. PLoS Biol. 3, e2 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Borgwardt, K. M., Vishwanathan, S. V. N. & Kriegel, H.-P. Class prediction from time series gene expression profiles using dynamical systems kernels. Pac. Symp. Biocomput. 2006, 547–558 (2006).

    Google Scholar 

  48. Lin, T., Kaminski, N. & Bar-Joseph, Z. Alignment and classification of time series gene expression in clinical studies. Bioinformatics 24, i147–i155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Costa, I. G., Schönhuth, A., Hafemeister, C. & Schliep, A. Constrained mixture estimation for analysis and robust classification of clinical time series. Bioinformatics 25, i6–i14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qian, J., Dolled-Filhart, M., Lin, J., Yu, H. & Gerstein, M. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol. 314, 1053–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Mukhopadhyay, N. D. & Chatterjee, S. Causality and pathway search in microarray time series experiment. Bioinformatics 23, 442–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Shi, Y., Mitchell, T. & Bar-Joseph, Z. Inferring pairwise regulatory relationships from multiple time series datasets. Bioinformatics 23, 755–763 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, J. et al. Characterizing dynamic changes in the human blood transcriptional network. PLoS Comput. Biol. 6, e1000671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. The FANTOM Consortium & Riken Omics Science Center. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genet. 41, 553–562 (2009).

  55. Ramsey, S. A. et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput. Biol. 4, e1000021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davidson, E. H. Emerging properties of animal gene regulatory networks. Nature 468, 911–920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oliveri, P., Tu, Q. & Davidson, E. H. Global regulatory logic for specification of an embryonic cell lineage. Proc. Natl Acad. Sci. USA 105, 5955–5962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Ihmels, J., Levy, R. & Barkai, N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nature Biotech. 22, 86–92 (2004).

    Article  CAS  Google Scholar 

  60. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet. 8, 450–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Zaslaver, A. et al. Just-in-time transcription program in metabolic pathways. Nature Genet. 36, 486–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Kalir, S., Mangan, S. & Alon, U. A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Mol. Syst. Biol. 1, 2005.0006 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yosef, N. & Regev, A. Impulse control: temporal dynamics in gene transcription. Cell 144, 886–896 (2011). A comprehensive review of impulse response in time-series gene expression data. It highlights both basic response patterns and the combination of such patterns in specific response programs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chechik, G. & Koller, D. Timing of gene expression responses to environmental changes. J. Comput. Biol. 16, 279–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Braun, E. & Brenner, N. Transient responses and adaptation to steady state in a eukaryotic gene regulation system. Phys. Biol. 1, 67–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Murray, J. I. et al. Diverse and specific gene expression responses to stresses in cultured human cells. Mol. Biol. Cell 15, 2361–2374 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. López-Maury, L., Marguerat, S. & Bähler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nature Rev. Genet. 9, 583–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Litvak, V. et al. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunol. 10, 437–443 (2009).

    Article  CAS  Google Scholar 

  69. Basma, H. et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136, 990–999 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seok, J., Xiao, W., Moldawer, L. L., Davis, R. W. & Covert, M. W. A dynamic network of transcription in LPS-treated human subjects. BMC Syst. Biol. 3, 78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shedden, K. & Cooper, S. Analysis of cell-cycle- specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc. Natl Acad. Sci. USA 99, 4379–4384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Simon, I., Siegfried, Z., Ernst, J. & Bar-Joseph, Z. Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nature Biotech. 23, 1503–1508 (2005).

    Article  CAS  Google Scholar 

  74. Lu, Y. et al. Combined analysis reveals a core set of cycling genes. Genome Biol. 8, R146 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jensen, L. J., Jensen, T. S., de Lichtenberg, U., Brunak, S. & Bork, P. Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature 443, 594–597 (2006). A study of the conservation of cell cycle regulation across species. It determined that temporal complex activation, rather than specific gene expression, is conserved between species.

    Article  CAS  PubMed  Google Scholar 

  76. Eshaghi, M. et al. Deconvolution of chromatin immunoprecipitation-microarray (ChIP-chip) analysis of MBF occupancies reveals the temporal recruitment of Rep2 at the MBF target genes. Eukaryot. Cell 10, 130–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sandmann, T. et al. A temporal map of transcription factor activity: Mef2 directly regulates target genes at all stages of muscle development. Dev. Cell 10, 797–807 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Jakobsen, J. S. et al. Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral muscle transcriptional network. Genes Dev. 21, 2448–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, Y.-H. et al. A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev. Cell 16, 280–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Jayaswal, V., Lutherborrow, M., Ma, D. D. F. & Hwa Yang, Y. Identification of microRNAs with regulatory potential using a matched microRNA-mRNA time-course data. Nucleic Acids Res. 37, e60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Luscombe, N. M. et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004). This was among the first studies to integrate time-series and static interaction data to determine temporal activity of transcription factors.

    Article  CAS  PubMed  Google Scholar 

  83. Liao, J. C. et al. Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl Acad. Sci. USA 100, 15522–15527 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bansal, M., Della Gatta, G. & di Bernardo, D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Ernst, J., Vainas, O., Harbison, C. T., Simon, I. & Bar-Joseph, Z. Reconstructing dynamic regulatory maps. Mol. Syst. Biol. 3, 74 (2007). This paper shows that integrating static protein–DNA binding interactions with temporal gene expression data allows the reconstruction of dynamic networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mendoza-Parra, M. A., Walia, M., Sankar, M. & Gronemeyer, H. Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Mol. Syst. Biol. 7, 538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kalir, S. et al. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292, 2080–2083 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Sigal, A. et al. Generation of a fluorescently labeled endogenous protein library in living human cells. Nature Protoc. 2, 1515–1527 (2007).

    Article  CAS  Google Scholar 

  89. Yeang, C.-H., Ideker, T. & Jaakkola, T. Physical network models. J. Comput. Biol. 11, 243–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Yeger-Lotem, E. et al. Bridging high-throughput genetic and transcriptional data reveals cellular responses to α-synuclein toxicity. Nature Genet. 41, 316–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Huang, S. C. & Fraenkel, E. Integration of proteomic, transcriptional, and interactome data reveals hidden signaling components. Sci. Signal. 2, ra40 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Vinayagam, A. et al. A directed protein interaction network for investigating intracellular signal transduction. Sci. Signal. 4, rs8 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. White, F. M. Quantitative phosphoproteomic analysis of signaling network dynamics. Curr. Opin. Biotechnol. 19, 404–409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kholodenko, B. N., Hancock, J. F. & Kolch, W. Signalling ballet in space and time. Nature Rev. Mol. Cell Biol. 11, 414–426 (2010).

    Article  CAS  Google Scholar 

  95. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Gaucher, D. et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 205, 3119–3131 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cho, R. J. et al. Transcriptional regulation and function during the human cell cycle. Nature Genet. 27, 48–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Lu, X., Zhang, W., Qin, Z. S., Kwast, K. E. & Liu, J. S. Statistical resynchronization and Bayesian detection of periodically expressed genes. Nucleic Acids Res. 32, 447–455 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bar-Joseph, Z., Farkash, S., Gifford, D. K., Simon, I. & Rosenfeld, R. Deconvolving cell cycle expression data with complementary information. Bioinformatics 20, i23–i30 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Siegal-Gaskins, D., Ash, J. N. & Crosson, S. Model-based deconvolution of cell cycle time-series data reveals gene expression details at high resolution. PLoS Comput. Biol. 5, e1000460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Klutstein, M. et al. Combination of genomic approaches with functional genetic experiments reveals two modes of repression of yeast middle-phase meiosis genes. BMC Genomics 11, 478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith, A. A., Vollrath, A., Bradfield, C. A. & Craven, M. Similarity queries for temporal toxicogenomic expression profiles. PLoS Comput. Biol. 4, e1000116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hafemeister, C., Costa, I. G., Schönhuth, A. & Schliep, A. Classifying short gene expression time-courses with Bayesian estimation of piecewise constant functions. Bioinformatics 27, 946–952 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Desai, K. H. et al. Dissecting inflammatory complications in critically injured patients by within-patient gene expression changes: a longitudinal clinical genomics study. PLoS Med. 8, e1001093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Taylor, M. W. et al. Changes in gene expression during pegylated interferon and ribavirin therapy of chronic hepatitis C virus distinguish responders from nonresponders to antiviral therapy. J. Virol. 81, 3391–3401 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liew, C.-C., Ma, J., Tang, H.-C., Zheng, R. & Dempsey, A. A. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J. Lab. Clin. Med. 147, 126–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Smyth, G. in Bioinformatics and Computational Biology Solutions Using R And Bioconductor 397–420 (Springer, 2005).

    Book  Google Scholar 

  108. Leek, J. T., Monsen, E., Dabney, A. R. & Storey, J. D. EDGE: extraction and analysis of differential gene expression. Bioinformatics 22, 507–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Woo, S., Leek, J. T. & Storey, J. D. A computationally efficient modular optimal discovery procedure. Bioinformatics 27, 509–515 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Ernst, J. & Bar-Joseph, Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7, 191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schliep, A., Steinhoff, C. & Schönhuth, A. Robust inference of groups in gene expression time-courses using mixtures of HMMs. Bioinformatics 20, i283–i289 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Magni, P., Ferrazzi, F., Sacchi, L. & Bellazzi, R. TimeClust: a clustering tool for gene expression time series. Bioinformatics 24, 430–432 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Sivriver, J., Habib, N. & Friedman, N. An integrative clustering and modeling algorithm for dynamical gene expression data. Bioinformatics 27, i392–i400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sinha, A. & Markatou, M. A. Platform for Processing Expression of Short Time Series (PESTS). BMC Bioinformatics 12, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bonneau, R. et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, R36 (2006).

  116. Galbraith, S. J., Tran, L. M. & Liao, J. C. Transcriptome network component analysis with limited microarray data. Bioinformatics 22, 1886–1894 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Schaffter, T., Marbach, D. & Floreano, D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27, 2263–2270 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health (NIH) grant 1RO1 GM085022 to Z.B.-J. Research in the laboratory of I.S. is supported by the Israel Science Foundation (grant 567/10), the German–Israeli Foundation (grant 998/2008), the Weinkselbaum family medical research fund and the European Research Council Starting Grant (281306).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziv Bar-Joseph, Anthony Gitter or Itamar Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

ModENCODE

Glossary

Spike controls

Special control transcripts that are mixed into a biological sample before microarray hybridization. Because the quantity added is known, the control probe signal can be used for accurate normalization.

dChip

A software for viewing and normalizing probe-level microarray data. It relies on the assumption that some genes are rank-invariant between different samples.

Approximating splines

A smooth piecewise polynomial function that can be fitted to a temporal gene expression profile.

Cubic splines

Splines composed of third-order polynomial functions.

Hierarchical clustering

A greedy clustering approach in which pairs of genes or clusters are sequentially connected until they form a tree-like structure.

K-means

A clustering approach that searches for a specific number of clusters (k) maximizing a global target function. Clusters are defined by their centre. Iteratively, genes are assigned to the best-matching cluster and then the clusters' centre values are updated.

Causal modelling

A causal model asserts that a gene controls its target genes and changes their expression levels. This is in contrast to a model that merely identifies genes for which expression is correlated over time.

Phorbol myristate acetate

(PMA). Phorbol 12-myristate 13-acetate is a diester of phorbol that is frequently used to activate the signal transduction enzyme protein kinase C (PKC).

Just-in-time

A temporal expression pattern that is characterized by a match between the temporal activation of a set of genes and the time in which their products are required.

NANOG

A transcription factor that is crucial for the self-renewal of undifferentiated embryonic stem cells.

Motif Activity Response Analysis

(MARA). A method for inferring DNA-binding-motif activity and for linking motifs to promoters. MARA models promoter expression as a linear function of motif activity and the number of functional binding sites.

Phosphoproteomic

The use of experimental technology such as mass spectrometry to identify and quantify protein or peptide phosphorylation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar-Joseph, Z., Gitter, A. & Simon, I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet 13, 552–564 (2012). https://doi.org/10.1038/nrg3244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3244

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research