Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Histone methylation: a dynamic mark in health, disease and inheritance

Key Points

  • Methylation occurs on various basic residues on histones and depending on the degree of methylation and the location of the methylated residue, there are different functional outcomes.

  • Histone methylation is a dynamic process, and methyl marks can be added or removed by specific enzymes. Other proteins can recognize and bind methylated residues to effect phenotypic outcomes.

  • Histone-modifying enzymes can be recruited to specific loci by DNA sequence, non-coding RNA, DNA methylation or other post-translational marks on histone tails.

  • Histone methylation can be dynamic or stable through the life of a cell and even through mitosis and meiosis and can, on some occasions, be inherited from parents to children.

  • Histone methylation helps to explain our phenotypic diversity from cell to cell and when its regulation and the balance between stable and dynamic marks are altered, diseases such as cancer and intellectual disability can ensue.

  • Histone methylation has been shown to have a role in almost all biological processes from DNA repair, cell cycle, stress response and transcription to development, differentiation and ageing.

  • Histone methylation levels change with age, and methyltransferases and demethylases have been shown to regulate longevity of several model organisms. In some instances, these enzymes have been shown to have a transgenerational effect on lifespan.

Abstract

Organisms require an appropriate balance of stability and reversibility in gene expression programmes to maintain cell identity or to enable responses to stimuli; epigenetic regulation is integral to this dynamic control. Post-translational modification of histones by methylation is an important and widespread type of chromatin modification that is known to influence biological processes in the context of development and cellular responses. To evaluate how histone methylation contributes to stable or reversible control, we provide a broad overview of how histone methylation is regulated and leads to biological outcomes. The importance of appropriately maintaining or reprogramming histone methylation is illustrated by its links to disease and ageing and possibly to transmission of traits across generations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models for the inheritance of histone methylation marks.

References

  1. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Byvoet, P., Shepherd, G. R., Hardin, J. M. & Noland, B. J. The distribution and turnover of labelled methyl groups in histone fractions of cultured mammalian cells. Arch. Biochem. Biophys. 148, 558–567 (1972).

    CAS  PubMed  Google Scholar 

  4. Murray, K. The occurrence of ɛ-N-methyl lysine in histones. Biochemistry 3, 10–15 (1964).

    CAS  PubMed  Google Scholar 

  5. Fischle, W., Franz, H., Jacobs, S. A., Allis, C. D. & Khorasanizadeh, S. Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs. J. Biol. Chem. 283, 19626–19635 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Paik, W. K. & Kim, S. ɛ-N-dimethyllysine in histones. Biochem.Biophys. Res. Commun. 27, 479–483 (1967).

    CAS  Google Scholar 

  7. Haempel, K., Lange, H. W. & Birkofer, L. ɛ-N-trimethyllysine, a new amino acid in histones. Die Naturwissenschaften 55, 37 (1968).

    Google Scholar 

  8. Borun, T. W., Pearson, D. & Paik, W. K. Studies of histone methylation during the HeLa S-3 cell cycle. J. Biol. Chem. 247, 4288–4298 (1972).

    CAS  PubMed  Google Scholar 

  9. Gershey, E. L., Haslett, G. W., Vidali, G. & Allfrey, V. G. Chemical studies of histone methylation. Evidence for the occurrence of 3-methylhistidine in avian erythrocyte histone fractions. J. Biol. Chem. 244, 4871–4877 (1969).

    CAS  PubMed  Google Scholar 

  10. Young, N. L., Dimaggio, P. A. & Garcia, B. A. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell. Mol. Life Sci. 67, 3983–4000 (2010).

    CAS  PubMed  Google Scholar 

  11. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homologue LSD1. Cell 119, 941–953 (2004). This study provides evidence of the first histone demethylase, demonstrating that histone methylation is reversible and dynamic.

    CAS  PubMed  Google Scholar 

  12. Zee, B. M. et al. In vivo residue-specific histone methylation dynamics. J. Biol. Chem. 285, 3341–3350 (2010).

    CAS  PubMed  Google Scholar 

  13. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol. 14, 1025–1040 (2007).

    CAS  Google Scholar 

  14. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000). This study identified the first histone methyltransferase and showed that different modifications can affect each other. The authors showed that phosphorylation of S10 inhibits K9 methylation.

    CAS  PubMed  Google Scholar 

  15. Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058 (2002).

    CAS  PubMed  Google Scholar 

  16. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Huang, J. & Berger, S. L. The emerging field of dynamic lysine methylation of non-histone proteins. Curr. Opin. Genet. Dev. 18, 152–158 (2008).

    CAS  PubMed  Google Scholar 

  18. Magnani, R., Dirk, L. M., Trievel, R. C. & Houtz, R. L. Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin. Nature Commun. 1, 43 (2010).

    Google Scholar 

  19. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    CAS  PubMed  Google Scholar 

  20. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    CAS  PubMed  Google Scholar 

  21. Cloos, P. A. et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311 (2006).

    CAS  PubMed  Google Scholar 

  22. Chang, B., Chen, Y., Zhao, Y. & Bruick, R. K. JMJD6 is a histone arginine demethylase. Science 318, 444–447 (2007).

    CAS  PubMed  Google Scholar 

  23. Webby, C. J. et al. JMJD6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325, 90–93 (2009).

    CAS  PubMed  Google Scholar 

  24. Cuthbert, G. L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).

    CAS  PubMed  Google Scholar 

  25. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    CAS  PubMed  Google Scholar 

  26. Chan, C. S., Rastelli, L. & Pirrotta, V. A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 13, 2553–2564 (1994).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Tillib, S. et al. Trithorax- and Polycomb-group response elements within an Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences. Mol. Cell. Biol. 19, 5189–5202 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Fritsch, C., Brown, J. L., Kassis, J. A. & Muller, J. The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126, 3905–3913 (1999).

    CAS  PubMed  Google Scholar 

  29. Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99–110 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    CAS  PubMed  Google Scholar 

  34. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    CAS  PubMed  Google Scholar 

  35. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Schorderet, P. & Duboule, D. Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet. 7, e1002071 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koziol, M. J. & Rinn, J. L. RNA traffic control of chromatin complexes. Curr. Opin. Genet. Dev. 20, 142–148 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet. 36, 1174–1180 (2004).

    CAS  PubMed  Google Scholar 

  41. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA 102, 152–157 (2005).

    CAS  PubMed  Google Scholar 

  42. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    CAS  PubMed  Google Scholar 

  43. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol. 6, 784–791 (2004).

    CAS  PubMed  Google Scholar 

  44. Gu, S. G. et al. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nature Genet. 44, 157–164 (2012).

    CAS  PubMed  Google Scholar 

  45. Ogawa, Y., Sun, B. K. & Lee, J. T. Intersection of the RNA interference and X-inactivation pathways. Science 320, 1336–1341 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Cernilogar, F. M. et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480, 391–395 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Johnson, L. M. et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 17, 379–384 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Rajakumara, E. et al. A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes Dev. 25, 137–152 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Fuks, F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev. 15, 490–495 (2005).

    CAS  PubMed  Google Scholar 

  51. Rountree, M. R. & Selker, E. U. DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity 105, 38–44 (2010).

    CAS  PubMed  Google Scholar 

  52. Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449, 933–937 (2007).

    CAS  PubMed  Google Scholar 

  53. Kirmizis, A. et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449, 928–932 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    CAS  PubMed  Google Scholar 

  55. Horton, J. R. et al. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nature Struct. Mol. Biol. 17, 38–43 (2010).

    CAS  Google Scholar 

  56. Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    CAS  PubMed  Google Scholar 

  57. Krogan, N. J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721–729 (2003).

    CAS  PubMed  Google Scholar 

  58. Kim, J. et al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–471 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lee, J. S. et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131, 1084–1096 (2007).

    CAS  PubMed  Google Scholar 

  60. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  61. Lan, F. et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694 (2007).

    CAS  PubMed  Google Scholar 

  62. Seenundun, S. et al. UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis. EMBO J. 29, 1401–1411 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Miller, S. A., Mohn, S. E. & Weinmann, A. S. JMJD3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40, 594–605 (2010). This is the first study to show that demethylases have biological function independent of their demethylase activity.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006). References 64 and 65 are the first demonstrations of a PHD-domain-containing protein as a methyl-lysine reader.

    CAS  PubMed  Google Scholar 

  66. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Hoppmann, V. et al. The CW domain, a new histone recognition module in chromatin proteins. EMBO J. 30, 1939–1952 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Wang, Y. et al. Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Mol. Cell 33, 428–437 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Collins, R. E. et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nature Struct. Mol. Biol. 15, 245–250 (2008).

    CAS  Google Scholar 

  70. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    CAS  PubMed  Google Scholar 

  71. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  72. Flanagan, J. F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    CAS  PubMed  Google Scholar 

  73. Zhang, P. et al. Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3. Nucleic Acids Res. 34, 6621–6628 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Yang, Y. et al. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell 40, 1016–1023 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Huang, Y., Fang, J., Bedford, M. T., Zhang, Y. & Xu, R. M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748–751 (2006).

    CAS  PubMed  Google Scholar 

  77. Kim, J. et al. Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep. 7, 397–403 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722 (2007). This paper was one of two that were the first to report unmethylated histone state readers (the other, by Ooi et al ., is not cited here owing to space limitations).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Tsai, W. W. et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Rajakumara, E. et al. PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol. Cell 43, 275–284 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Sprangers, R., Groves, M. R., Sinning, I. & Sattler, M. High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol. 327, 507–520 (2003).

    CAS  PubMed  Google Scholar 

  82. Nielsen, P. R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107 (2002).

    CAS  PubMed  Google Scholar 

  83. Iwase, S. et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nature Struct. Mol. Biol. 18, 769–776 (2011).

    CAS  Google Scholar 

  84. Eustermann, S. et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nature Struct. Mol. Biol. 18, 777–782 (2011).

    CAS  Google Scholar 

  85. Dhayalan, A. et al. The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9. Hum. Mol. Genet. 20, 2195–2203 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    CAS  PubMed  Google Scholar 

  88. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  89. Schulze, J. M. et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol. Cell 35, 626–641 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Mohan, M. et al. Linking H3K79 trimethylation to Wnt signalling through a novel Dot1-containing complex (DotCom). Genes Dev. 24, 574–589 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  92. Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007).

    CAS  PubMed  Google Scholar 

  93. Miller, S. A., Huang, A. C., Miazgowicz, M. M., Brassil, M. M. & Weinmann, A. S. Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. Genes Dev. 22, 2980–2993 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Lee, M. G., Norman, J., Shilatifard, A. & Shiekhattar, R. Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 128, 877–887 (2007).

    CAS  PubMed  Google Scholar 

  95. Tahiliani, M. et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447, 601–605 (2007).

    CAS  PubMed  Google Scholar 

  96. Margueron, R. & Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nature Rev. Genet. 11, 285–296 (2010).

    CAS  PubMed  Google Scholar 

  97. Noma, K., Allis, C. D. & Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    CAS  PubMed  Google Scholar 

  98. Pedersen, M. T. & Helin, K. Histone demethylases in development and disease. Trends Cell Biol. 20, 662–671 (2010).

    CAS  PubMed  Google Scholar 

  99. Nottke, A., Colaiacovo, M. P. & Shi, Y. Developmental roles of the histone lysine demethylases. Development 136, 879–889 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Greenberg, R. A. Histone tails: directing the chromatin response to DNA damage. FEBS Lett. 585, 2883–2890 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Eissenberg, J. C. & Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339, 240–249 (2010).

    CAS  PubMed  Google Scholar 

  102. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nature Rev. Cancer 10, 457–469 (2010).

    CAS  Google Scholar 

  103. Albert, M. & Helin, K. Histone methyltransferases in cancer. Semin. Cell Dev. Biol. 21, 209–220 (2010).

    CAS  PubMed  Google Scholar 

  104. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002). This paper describes how the repressive methyltransferase EZH2 is activated in advanced prostate cancers.

    CAS  PubMed  Google Scholar 

  105. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Visser, H. P. et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br. J. Haematol. 112, 950–958 (2001).

    CAS  PubMed  Google Scholar 

  107. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genet. 41, 521–523 (2009).

    CAS  PubMed  Google Scholar 

  108. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet. 42, 722–726 (2010).

    CAS  PubMed  Google Scholar 

  109. Wang, G. G., Cai, L., Pasillas, M. P. & Kamps, M. P. NUP98-NSD1 links H3K36 methylation to HOX-A gene activation and leukaemogenesis. Nature Cell Biol. 9, 804–812 (2007). This is the first study to show that a fusion protein caused by chromosomal translocations has a causal regulation of cancer formation.

    CAS  PubMed  Google Scholar 

  110. Wang, G. G. et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459, 847–851 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Milne, T. A. et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 38, 853–863 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Iwase, S. & Shi, Y. Histone and DNA modifications in mental retardation. Prog. Drug. Res. 67, 147–173 (2011).

    CAS  PubMed  Google Scholar 

  113. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nature Genet. 30, 365–366 (2002).

    CAS  PubMed  Google Scholar 

  114. Kleefstra, T. et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J. Med. Genet. 46, 598–606 (2009).

    CAS  PubMed  Google Scholar 

  115. Balemans, M. C. et al. Reduced exploration, increased anxiety, and altered social behaviour: autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav. Brain Res. 208, 47–55 (2010).

    CAS  PubMed  Google Scholar 

  116. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    CAS  PubMed  Google Scholar 

  117. Iwase, S. et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088 (2007).

    CAS  PubMed  Google Scholar 

  118. Kleine-Kohlbrecher, D. et al. A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol. Cell 38, 165–178 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Qi, H. H. et al. Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 466, 503–507 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Liu, W. et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466, 508–512 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Ng, D. et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nature Genet. 36, 411–416 (2004).

    CAS  PubMed  Google Scholar 

  122. Lower, K. M. et al. Mutations in PHF6 are associated with Borjeson–Forssman–Lehmann syndrome. Nature Genet. 32, 661–665 (2002).

    CAS  PubMed  Google Scholar 

  123. Field, M. et al. Mutations in the BRWD3 gene cause X-linked mental retardation associated with macrocephaly. Am. J. Hum. Genet. 81, 367–374 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Drane, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Mitson, M., Kelley, L. A., Sternberg, M. J., Higgs, D. R. & Gibbons, R. J. Functional significance of mutations in the SNF2 domain of ATRX. Hum. Mol. Genet. 20, 2603–2610 (2011).

    CAS  PubMed  Google Scholar 

  129. Honda, S. et al. Concomitant microduplications of MECP2 and ATRX in male patients with severe mental retardation. J. Hum. Genet. 57, 73–77 (2011).

    PubMed  Google Scholar 

  130. Pollina, E. A. & Brunet, A. Epigenetic regulation of aging stem cells. Oncogene 30, 3105–3126 (2011).

    CAS  PubMed  Google Scholar 

  131. Sarg, B., Koutzamani, E., Helliger, W., Rundquist, I. & Lindner, H. H. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J. Biol. Chem. 277, 39195–39201 (2002).

    CAS  PubMed  Google Scholar 

  132. Maures, T. J., Greer, E. L., Hauswirth, A. G. & Brunet, A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10, 980–990 (2011).

    CAS  PubMed  Google Scholar 

  133. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nature Med. 11, 440–445 (2005).

    CAS  PubMed  Google Scholar 

  135. Shumaker, D. K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl Acad. Sci. USA 103, 8703–8708 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. McColl, G. et al. Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J. Biol. Chem. 283, 350–357 (2008).

    CAS  PubMed  Google Scholar 

  137. Greer, E. L. et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Siebold, A. P. et al. Polycomb repressive complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc. Natl Acad. Sci. USA 107, 169–174 (2010).

    CAS  PubMed  Google Scholar 

  139. Jin, C. et al. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signalling pathway. Cell Metab. 14, 161–172 (2011).

    CAS  PubMed  Google Scholar 

  140. Li, L., Greer, C., Eisenman, R. N. & Secombe, J. Essential functions of the histone demethylase lid. PLoS Genet. 6, e1001221 (2010).

    PubMed Central  PubMed  Google Scholar 

  141. Ni, Z., Ebata, A., Alipanahiramandi, E. & Lee, S. S. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 29 Dec 2011 (doi:10.1111/j.1474-9726.2011.00785.x).

    CAS  PubMed  Google Scholar 

  142. Sogo, J. M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204 (1986).

    CAS  PubMed  Google Scholar 

  143. Bonne-Andrea, C., Wong, M. L. & Alberts, B. M. In vitro replication through nucleosomes without histone displacement. Nature 343, 719–726 (1990).

    CAS  PubMed  Google Scholar 

  144. Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98 (2010). This paper uses SILAC to show that histone dimers can be passed through mitosis in a conserved manner.

    CAS  PubMed  Google Scholar 

  145. Katan-Khaykovich, Y. & Struhl, K. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad. Sci. USA 108, 1296–1301 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Martin, C. & Zhang, Y. Mechanisms of epigenetic inheritance. Curr. Opin. Cell Biol. 19, 266–272 (2007).

    CAS  PubMed  Google Scholar 

  147. Moazed, D. Mechanisms for the inheritance of chromatin states. Cell 146, 510–518 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Blobel, G. A. et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 36, 970–983 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Francis, N. J., Follmer, N. E., Simon, M. D., Aghia, G. & Butler, J. D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137, 110–122 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Simpson, V. J., Johnson, T. E. & Hammen, R. F. Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Res. 14, 6711–6719 (1986).

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Youngson, N. A. & Whitelaw, E. Transgenerational epigenetic effects. Annu. Rev. Genom. Hum. Genet. 9, 233–257 (2008).

    CAS  Google Scholar 

  152. Vastenhouw, N. L. et al. Gene expression: long-term gene silencing by RNAi. Nature 442, 882 (2006).

    CAS  PubMed  Google Scholar 

  153. Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    CAS  PubMed  Google Scholar 

  154. Rechavi, O., Minevich, G. & Hobert, O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147, 1248–1256 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    CAS  PubMed  Google Scholar 

  156. Karachentsev, D., Sarma, K., Reinberg, D. & Steward, R. PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19, 431–435 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452, 877–881 (2008).

    CAS  PubMed  Google Scholar 

  158. Muramoto, T., Muller, I., Thomas, G., Melvin, A. & Chubb, J. R. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr. Biol. 20, 397–406 (2010).

    CAS  PubMed  Google Scholar 

  159. Katz, D. J., Edwards, T. M., Reinke, V. & Kelly, W. G. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009). This is the first paper to show that there is a potential inheritance of histone methylation marks through generations in multicellular organisms.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Nottke, A. C. et al. SPR-5 is a histone H3K4 demethylase with a role in meiotic double-strand break repair. Proc. Natl Acad. Sci. USA 108, 12805–12810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Seong, K. H., Li, D., Shimizu, H., Nakamura, R. & Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061 (2011).

    CAS  PubMed  Google Scholar 

  163. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  164. Deng, W. & Blobel, G. A. Do chromatin loops provide epigenetic gene expression states? Curr. Opin. Genet. Dev. 20, 548–554 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Kahn, T. G., Schwartz, Y. B., Dellino, G. I. & Pirrotta, V. Polycomb complexes and the propagation of the methylation mark at the Drosophila ubx gene. J. Biol. Chem. 281, 29064–29075 (2006).

    CAS  PubMed  Google Scholar 

  166. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    CAS  PubMed  Google Scholar 

  167. Suganuma, T. & Workman, J. L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80, 473–499 (2011).

    CAS  PubMed  Google Scholar 

  168. Bell, O., Tiwari, V. K., Thoma, N. H. & Schubeler, D. Determinants and dynamics of genome accessibility. Nature Rev. Genetics 12, 554–564 (2011).

    CAS  Google Scholar 

  169. Lange, M. et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev. 22, 2370–2384 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R. & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005).

    CAS  PubMed  Google Scholar 

  171. Sims, R. J. et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–41792 (2005).

    CAS  PubMed  Google Scholar 

  172. Li, B. et al. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316, 1050–1054 (2007).

    CAS  PubMed  Google Scholar 

  173. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    CAS  PubMed  Google Scholar 

  174. Serandour, A. A. et al. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res. 21, 555–565 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nature Cell Biol. 8, 764–770 (2006).

    CAS  PubMed  Google Scholar 

  176. Fuda, N. J., Ardehali, M. B. & Lis, J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    CAS  PubMed  Google Scholar 

  178. Zhu, L. et al. Patterns of exon–intron architecture variation of genes in eukaryotic genomes. BMC Genomics 10, 47 (2009).

    PubMed Central  PubMed  Google Scholar 

  179. Vermeulen, M. et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).

    CAS  PubMed  Google Scholar 

  180. Sims, R. J. et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nature Genet. 41, 376–381 (2009).

    CAS  PubMed  Google Scholar 

  182. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. Cell 144, 16–26 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  183. de Almeida, S. F. et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nature Struct. Mol. Biol. 18, 977–983 (2011).

    Google Scholar 

  184. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Kim, S., Kim, H., Fong, N., Erickson, B. & Bentley, D. L. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc. Natl Acad. Sci. USA 108, 13564–13569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. McMahon, K. A. et al. Mll has a critical role in fetal and adult haematopoietic stem cell self-renewal. Cell Stem Cell 1, 338–345 (2007).

    CAS  PubMed  Google Scholar 

  187. Cerveira, N. et al. Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. Leukemia 17, 2244–2247 (2003).

    CAS  PubMed  Google Scholar 

  188. van Zutven, L. J. et al. Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene. Genes Chromosomes Cancer 45, 437–446 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Pollina for critical reading of the manuscript. We thank P. Trojer and M. T. Bedford for helpful discussions. The work from the Shi laboratory is supported by grants from the US National Institutes of Health (GM058012, GM071004 and NCI118487). E.L.G. was supported by a Helen Hay Whitney postdoctoral fellowship. We apologize for literature omitted owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Yang Shi's homepage

SUPPLEMENTARY INFORMATION

S1 (reference list)

S2 (reference list)

Glossary

Symmetrically dimethylated

Symmetrically dimethylated arginines have methyl groups on each of the two nitrogens.

Asymmetrically dimethylated

Asymmetrically dimethylated arginines have two methyl groups on a single nitrogen.

Trithorax group proteins

(TrxG proteins). A group of chromatin regulatory proteins that typically act to activate or to maintain gene expression.

Polycomb group proteins

(PcG proteins). Chromatin regulatory proteins that are typically involved in repressing gene expression.

Polycomb repressive complex 2

(PRC2). A Polycomb group complex that trimethylates histone H3 lysine 27 (H3K27). The core PRC2 subunits are SUZ12, EED and the methyltransferases EZH2 (E(Z) in Drosphila melanogaster); there are additional components as well.

RNAi

A series of processes in which small RNAs (that are in complexes with proteins) bind to specific mRNA molecules or to genes and can regulate their activity.

X-chromosome inactivation

A mechanism for silencing one of the two X chromosomes in female mammals to compensate for the different gene dosage in XX females and XY males. Heterochromatin forms on the inactive X chromosome.

MLL complex

A protein complex containingmixed-lineage leukaemia or myeloid/lymphoid (MLL) proteins, which are the mammalian homologues of Trithorax and have methyltransferase activity.

PHD fingers

Plant homeo domains are nuclear Zn2+-binding domains ranging from ~50–80 amino acids and typically have a signature of four cysteines, one histidine and three cysteines. They bind to both histone and non-histone proteins and, in some cases, function as E3 ligases.

WD40 repeats

A short ~40 amino acid domain usually terminating in tryptophan (W) and aspartic acid (D), which forms a circularized beta-propeller structure. They can serve as scaffolding proteins for multiprotein complexes.

CW domains

A ~45–55 amino acid zinc-binding domain containing at least four cysteine (C) and two tryptophan (W) residues that are exclusively found in eukaryotes.

PWWP domains

These ~135 amino acid domains have a central core consisting of proline tryptophan tryptophan proline (PWWP) and are found in eukaryotes from yeast to mammals. The PWWP domain has a barrel-like five-stranded structure and a five-helix bundle.

MBT

A royal superfamily domain that binds to methylated lysine.

ADD domain

This domain is named after its presence in three proteins ATRX, DNMT3 and DNMT3L, which bind to histone H3. It contains a GATA-like C2C2 zinc finger and a C4C4 imperfect PHD finger. It contains ~120 amino acids.

Pre-initiation complex

A large complex of proteins that is necessary for the transcription of protein-coding genes. It helps to position RNA polymerase II appropriately and to orient the DNA in the active site of RNA polymerase II.

Small nuclear ribonucleoprotein

(snRNP). These are RNA–protein complexes that, together with other proteins and precursor mRNA, form a complex where splicing occurs.

Stable isotope labelling by amino acids in cell culture

(SILAC). Two cell populations (an experimental one and a control one) that have been grown in media containing only heavy or only light forms of particular amino acids can be compared by quantitative mass spectrometry proteomics.

Epigenetic

In this context, we use the term 'epigenetic' to refer to heritable changes in gene expression that occur without alterations in DNA sequence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greer, E., Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13, 343–357 (2012). https://doi.org/10.1038/nrg3173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3173

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer