Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA secondary structures: stability and function of G-quadruplex structures

Key Points

  • DNA can assume a variety of secondary structures aside from the canonical B-form. Sequences capable of forming these alternative structures in vitro are often sites of genomic instability in vivo.

  • G-quadruplex (G4) DNA is a stable secondary structure held together by G-G base pairs. DNA sequences capable of forming G4 DNA in vitro (G4 motifs) are enriched in ribosomal DNA and promoter regions, and at telomeres and mitotic and meiotic double-strand break (DSB) sites. This suggests that G4 structures may form in vivo and serve one or more biological functions.

  • G4 structures are predicted to form in the telomeric DNA of many species, and telomere structural proteins, such as TEBPα and TEBPβ in ciliates and Rap1 in Saccharomyces cerevisiae, promote the formation of G4 DNA in vitro. Anti-G4 DNA antibody experiments in ciliates have provided some of the best evidence to date for the existence of G4 structures in vivo.

  • Genetic data suggest that G4 motifs affect the transcription of a variety of genes, most notably MYC, where the G4 motif acts as a repressor. Transcription can also be affected by binding of transcription factors to G4 structures (for example, myosin D (MyoD)), which can then titrate transcriptional regulators away from their recognition sequences in promoters.

  • G4 structures must be unwound to allow faithful replication of the entire genome, a process that is likely to involve helicases. In vitro, most tested helicases can unwind G4 DNA, but PIF1 family helicases are particularly potent G4 DNA unwinders. In vivo, G4 motifs are often mutated such that they can no longer form G4 structures in the absence of certain helicases.

  • Multiple lines of evidence point towards the existence of other non-B-form DNA secondary structures (such as Z-DNA, cruciforms and triplex DNA) in vivo. As with G4 DNA, these secondary structures are predicted to serve physiological functions, despite the fact that sequence motifs capable of forming Z-DNA, cruciforms or triplex DNA are mutagenic hotspots.

  • Direct evidence for the existence of G4 DNA in vivo is lacking and will require novel experimental approaches to satisfy sceptics.

Abstract

In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G-quadruplex DNA.
Figure 2: Putative functional roles of G-quadruplex structures at telomeres.
Figure 3: Putative functional roles of G-quadruplex structures during DNA replication.
Figure 4: Putative functional roles of G-quadruplex structures during transcription.
Figure 5: Putative roles for G-quadruplex structures in meiosis.

Similar content being viewed by others

References

  1. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Kypr, J., Kejnovska, I., Renciuk, D. & Vorlickova, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 37, 1713–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huppert, J. L. Structure, location and interactions of G-quadruplexes. FEBS J. 277, 3452–3458 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Bang, I. Untersuchungen über die Guanylsäure. Biochem. Z. 26, 293–231 (1910) (in German).

    CAS  Google Scholar 

  5. Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962). This is the first observation that guanylic acids can assemble into higher-order structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williamson, J. R., Raghuraman, M. K. & Cech, T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989). This study demonstrates that oligonucleotides composed of cilate telomeric repeat sequences form G-quartets in the presence of certain monovalent cations (for example, Na+ and K+). The authors also propose that G-quartets may form at telomeres in vivo and must be dealt with by the replication machinery.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson, W. D. & Sugiyama, H. First international meeting on quadruplex DNA. ACS Chem. Biol. 2, 589–594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong, H. M., Payet, L. & Huppert, J. L. Function and targeting of G-quadruplexes. Curr. Opin. Mol. Ther. 11, 146–155 (2009).

    CAS  PubMed  Google Scholar 

  9. Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hazel, P., Parkinson, G. N. & Neidle, S. Predictive modelling of topology and loop variations in dimeric DNA quadruplex structures. Nucleic Acids Res. 34, 2117–2127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hardin, C. C., Perry, A. G. & White, K. Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids. Biopolymers 56, 147–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Guedin, A., Gros, J., Alberti, P. & Mergny, J. L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 38, 7858–7868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bugaut, A. & Balasubramanian, S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47, 689–697 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Patel, D. J., Phan, A. T. & Kuryavyi, V. Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 35, 7429–7455 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Capra, J. A., Paeschke, K., Singh, M. & Zakian, V. A. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput. Biol. 6, e1000861 (2010). This study reports a genome-wide computational analysis identifying the location and evolutionary conservation of G4 motifs in S. cerevisiae and related yeasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Todd, A. K., Johnston, M. & Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–2907 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hershman, S. G. et al. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 36, 144–156 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005). The authors performed a genome-wide computational analysis that identified all regions in the human genome with a high potential to form G4 structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huppert, J. L. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem. Soc. Rev. 37, 1375–1384 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Rawal, P. et al. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 16, 644–655 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakken, S., Rognes, T. & Hovig, E. The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts. Nucleic Acids Res. 37, 5749–5756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eddy, J. & Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 34, 3887–3896 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zakian, V. A. Telomeres: the beginnings and ends of eukaryotic chromosomes. Exp. Cell Res. 318, 1456–1460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Henderson, E. et al. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51, 899–908 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Sundquist, W. I. & Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342, 825–829 (1989). This in vitro analysis demonstrates that telomeric DNA can fold into G4 structures.

    Article  CAS  PubMed  Google Scholar 

  26. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Fang, G. & Cech, T. R. The β subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74, 875–885 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Paeschke, K., Simonsson, T., Postberg, J., Rhodes, D. & Lipps, H. J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nature Struct. Mol. Biol. 12, 847–854 (2005). This study includes compelling evidence for the in vivo existence of G4 structures at telomeres. Telomere-binding proteins are shown to regulate the formation of such structures.

    Article  CAS  Google Scholar 

  29. Giraldo, R. & Rhodes, D. The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J. 13, 2411–2420 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaug, A. J., Podell, E. R. & Cech, T. R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl Acad. Sci. USA 102, 10864–10869 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, H., Nora, G. J., Ghodke, H. & Opresko, P. L. Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding. J. Biol. Chem. 286, 7479–7489 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl Acad. Sci. 98, 8572–8577 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paeschke, K. et al. Telomerase recruitment by the telomere end binding protein-β facilitates G-quadruplex DNA unfolding in ciliates. Nature Struct. Mol. Biol. 15, 598–604 (2008).

    Article  CAS  Google Scholar 

  34. Postberg, J., Tsytlonok, M., Sparvoli, D., Rhodes, D. & Lipps, H. J. A telomerase-associated RecQ protein-like helicase resolves telomeric G-quadruplex structures during replication. Gene 497, 147–154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Juranek, S. A. & Paeschke, K. Cell cycle regulation of G-quadruplex DNA structures at telomeres. Curr. Pharm. Des. 18, 1867–1872 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Paeschke, K., McDonald, K. R. & Zakian, V. A. Telomeres: structures in need of unwinding. FEBS Lett. 584, 3769–3772 (2010).

    Article  CAS  Google Scholar 

  37. Yang, Q. et al. Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: I. recognizing mixed G-quadruplex in human telomeres. Chem. Commun. 9, 1103–1105 (2009).

    Article  CAS  Google Scholar 

  38. Chang, C. C. et al. A novel carbazole derivative, BMVC: a potential antitumor agent and fluorescence marker of cancer cells. Chem. Biodivers. 1, 1377–1384 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Shay, J. W. & Wright, W. E. Role of telomeres and telomerase in cancer. Seminars Cancer Biol. 21, 349–353 (2011).

    Article  CAS  Google Scholar 

  40. Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991). The authors report the first observation that telomerase action is influenced by G4 structures.

    Article  CAS  PubMed  Google Scholar 

  41. Oganesian, L., Moon, I. K., Bryan, T. M. & Jarstfer, M. B. Extension of G-quadruplex DNA by ciliate telomerase. EMBO J. 25, 1148–1159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oganesian, L., Graham, M. E., Robinson, P. J. & Bryan, T. M. Telomerase recognizes G-quadruplex and linear DNA as distinct substrates. Biochemistry 46, 11279–11290 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Neidle, S. Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 277, 1118–1125 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Rezler, E. M. et al. Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure. J. Am. Chem. Soc. 127, 9439–9447 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, M. Y., Vankayalapati, H., Shin-Ya, K., Wierzba, K. & Hurley, L. H. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J. Am. Chem. Soc. 124, 2098–2099 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. De Cian, A. et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc. Natl Acad. Sci. USA 104, 17347–17352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gomez, D. et al. Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res. 32, 371–379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, M. Y., Gleason-Guzman, M., Izbicka, E., Nishioka, D. & Hurley, L. H. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res. 63, 3247–3256 (2003).

    CAS  PubMed  Google Scholar 

  49. Shammas, M. A. et al. Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin. Cancer Res. 10, 770–776 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Tahara, H. et al. G-quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3′ telomeric overhang in cancer cells. Oncogene 25, 1955–1966 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Tauchi, T. et al. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways. Oncogene 22, 5338–5347 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Tauchi, T. et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene 25, 5719–5725 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Gomez, D. et al. Interaction of telomestatin with the telomeric single-strand overhang. J. Biol. Chem. 279, 41487–41494 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Gomez, D. et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res. 66, 6908–6912 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Smith, J. S. et al. Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nature Struct. Mol. Biol. 18, 478–485 (2011).

    Article  CAS  Google Scholar 

  56. London, T. B. et al. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J. Biol. Chem. 283, 36132–36139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mohaghegh, P. et al. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29, 2843–2849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huber, M. D., Lee, D. C. & Maizels, N. G4 DNA unwinding by BLM and Sgs1p: substrate specificity and substrate-specific inhibition. Nucleic Acids Res. 30, 3954–3961 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ribeyre, C. et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 5, e1000475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanders, C. M. Human Pif1 helicase is a G-quadruplex DNA binding protein with G-quadruplex DNA unwinding activity. Biochem. J. 430, 119–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Arola, A. & Vilar, R. Stabilisation of G-quadruplex DNA by small molecules. Curr. Top. Med. Chem. 8, 1405–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Neidle, S. The structures of quadruplex nucleic acids and their drug complexes. Curr. Opin. Struct. Biol. 19, 239–250 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, Y., Shin-ya, K. & Brosh, R. M. Jr. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell. Biol. 28, 4116–4128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paeschke, K., Capra, J. A. & Zakian, V. A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678–691 (2011). This paper demonstrates that the S. cerevisiae Pif1 helicase binds to G4 motifs genome-wide and is important for DNA replication and genome stability at such sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lopes, J. et al. G-quadruplex-induced instability during leading-strand replication. EMBO J. 30, 4033–4046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sarkies, P., Reams, C., Simpson, L. J. & Sale, J. E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010). The authors show that failure to properly replicate through G4 motifs affects chromatin structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nature Chem. Biol. 8, 301–310 (2012).

    Article  CAS  Google Scholar 

  68. Cheung, I., Schertzer, M., Rose, A. & Lansdorp, P. M. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nature Genet. 31, 405–409 (2002). Genetic experiments reveal that deficiencies in the DOG-1 helicase lead to genome instabilty at G-rich sequences in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  69. Kruisselbrink, E. et al. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr. Biol. 18, 900–905 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Vannier, J. B., Pavicic-Kaltenbrunner, V., Petalcorin, M. I., Ding, H. & Boulton, S. J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012). This study indicates that G4 structures cause vertebrate telomere fragility, which can be counteracted by the RTEL1 helicase.

    Article  CAS  PubMed  Google Scholar 

  71. Barber, L. J. et al. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135, 261–271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huppert, J. L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007). Computational analysis revealed that G4 motifs are significantly enriched at promoters in human DNA.

    Article  CAS  PubMed  Google Scholar 

  73. Yadav, V. K., Abraham, J. K., Mani, P., Kulshrestha, R. & Chowdhury, S. QuadBase: genome-wide database of G4 DNA—occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res. 36, D381–D385 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Mullen, M. A. et al. RNA G-quadruplexes in the model plant species Arabidopsis thaliana: prevalence and possible functional roles. Nucleic Acids Res. 38, 8149–8163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huppert, J. L., Bugaut, A., Kumari, S. & Balasubramanian, S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 36, 6260–6268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Duquette, M. L., Handa, P., Vincent, J. A., Taylor, A. F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nature Struct. Mol. Biol. 15, 146–154 (2008).

    Article  CAS  Google Scholar 

  78. Sun, D. & Hurley, L. H. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J. Med. Chem. 52, 2863–2874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brooks, T. A., Kendrick, S. & Hurley, L. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J. 277, 3459–3469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qin, Y. & Hurley, L. H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90, 1149–1171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gunaratnam, M. et al. G-quadruplex compounds and cis-platin act synergistically to inhibit cancer cell growth in vitro and in vivo. Biochem. Pharmacol. 78, 115–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hsu, S. T. et al. A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J. Am. Chem. Soc. 131, 13399–13409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Palumbo, S. L., Ebbinghaus, S. W. & Hurley, L. H. Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J. Am. Chem. Soc. 131, 10878–10891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bejugam, M. et al. Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands: small molecule regulation of c-kit oncogene expression. J. Am. Chem. Soc. 129, 12926–12927 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marcu, K. B., Bossone, S. A. & Patel, A. J. myc function and regulation. Annu. Rev. Biochem. 61, 809–860 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. D'Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med. 7, 235–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Strieder, V. & Lutz, W. Regulation of N-myc expression in development and disease. Cancer Lett. 180, 107–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Lutz, W., Leon, J. & Eilers, M. Contributions of Myc to tumorigenesis. Biochim. Biophys. Acta 1602, 61–71 (2002).

    CAS  PubMed  Google Scholar 

  89. Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nature Rev. Cancer 2, 764–776 (2002).

    Article  CAS  Google Scholar 

  90. Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Simonsson, T., Pecinka, P. & Kubista, M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res. 26, 1167–1172 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl Acad. Sci. USA 99, 11593–11598 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Han, H., Langley, D. R., Rangan, A. & Hurley, L. H. Selective interactions of cationic porphyrins with G-quadruplex structures. J. Am. Chem. Soc. 123, 8902–8913 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Sun, D. et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 40, 2113–2116 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Grand, C. L. et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol. Cancer Ther. 1, 565–573 (2002).

    CAS  PubMed  Google Scholar 

  96. Brown, R. V., Danford, F. L., Gokhale, V., Hurley, L. H. & Brooks, T. A. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J. Biol. Chem. 286, 41018–41027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boddupally, P. V. et al. Anticancer activity and cellular repression of c-MYC by the G-quadruplex-stabilizing 11-piperazinylquindoline is not dependent on direct targeting of the G-quadruplex in the c-MYC promoter. J. Med. Chem. 55, 6076–6086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gonzalez, V., Guo, K., Hurley, L. & Sun, D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J. Biol. Chem. 284, 23622–23635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gonzalez, V. & Hurley, L. H. The c-MYC NHE III1: function and regulation. Annu. Rev. Pharmacol. Toxicol. 50, 111–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Bates, P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O. & Miller, D. M. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J. Biol. Chem. 274, 26369–26377 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Brys, A. & Maizels, N. LR1 regulates c-myc transcription in B-cell lymphomas. Proc. Natl Acad. Sci. USA 91, 4915–4919 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dempsey, L. A., Sun, H., Hanakahi, L. A. & Maizels, N. G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D, a role for G-G pairing in immunoglobulin switch recombination. J. Biol. Chem. 274, 1066–1071 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Gonzalez, V. & Hurley, L. H. The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry 49, 9706–9714 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Wei, Q. & Paterson, B. M. Regulation of MyoD function in the dividing myoblast. FEBS Lett. 490, 171–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Shklover, J., Weisman-Shomer, P., Yafe, A. & Fry, M. Quadruplex structures of muscle gene promoter sequences enhance in vivo MyoD-dependent gene expression. Nucleic Acids Res. 38, 2369–2377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yafe, A., Shklover, J., Weisman-Shomer, P., Bengal, E. & Fry, M. Differential binding of quadruplex structures of muscle-specific genes regulatory sequences by MyoD, MRF4 and myogenin. Nucleic Acids Res. 36, 3916–3925 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fernando, H. et al. Genome-wide analysis of a G-quadruplex-specific single-chain antibody that regulates gene expression. Nucleic Acids Res. 37, 6716–6722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Johnson, J. E., Cao, K., Ryvkin, P., Wang, L. S. & Johnson, F. B. Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res. 38, 1114–1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Wyatt, J. R., Davis, P. W. & Freier, S. M. Kinetics of G-quartet-mediated tetramer formation. Biochemistry 35, 8002–8008 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Mergny, J. L., De Cian, A., Ghelab, A., Sacca, B. & Lacroix, L. Kinetics of tetramolecular quadruplexes. Nucleic Acids Res. 33, 81–94 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu, Z. et al. Tertiary DNA structure in the single-stranded hTERT promoter fragment unfolds and refolds by parallel pathways via cooperative or sequential events. J. Am. Chem. Soc. 134, 5157–5164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gray, R. D. & Chaires, J. B. Kinetics and mechanism of K+- and Na+-induced folding of models of human telomeric DNA into G-quadruplex structures. Nucleic Acids Res. 36, 4191–4203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Edmunds, C. E., Simpson, L. J. & Sale, J. E. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol. Cell 30, 519–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Sarkies, P. et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 40, 1485–1498 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Hiratani, I., Takebayashi, S., Lu, J. & Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect—part II. Curr. Opin. Genet. Dev. 19, 142–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Besnard, E. et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nature Struct. Mol. Biol. 19, 837–844 (2012). This computational study found that G4 consensus motifs are located near origins of replication in human cells.

    Article  CAS  Google Scholar 

  117. Lobachev, K. S. et al. Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics 148, 1507–1524 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Muniyappa, K., Anuradha, S. & Byers, B. Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol. Cell. Biol. 20, 1361–1369 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Anuradha, S. & Muniyappa, K. Meiosis-specific yeast Hop1 protein promotes synapsis of double-stranded DNA helices via the formation of guanine quartets. Nucleic Acids Res. 32, 2378–2385 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, Z. & Gilbert, W. The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: implication of in vivo functions for this novel DNA structure. Cell 77, 1083–1092 (1994).

    Article  CAS  PubMed  Google Scholar 

  122. Ghosal, G. & Muniyappa, K. Saccharomyces cerevisiae Mre11 is a high-affinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease: implications for replication of telomeric DNA. Nucleic Acids Res. 33, 4692–4703 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ghosal, G. & Muniyappa, K. The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity. J. Mol. Biol. 372, 864–882 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Cahoon, L. A. & Seifert, H. S. An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science 325, 764–767 (2009). The genetics in this paper provide some of the best evidence for the existence of G4 structures in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bugaut, A. & Balasubramanian, S. 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 40, 4727–4741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Millevoi, S., Moine, H. & Vagner, S. G-quadruplexes in RNA biology. Wiley Interdisciplinary Rev. RNA 3, 495–507 (2012).

    Article  CAS  Google Scholar 

  127. Svozil, D., Kalina, J., Omelka, M. & Schneider, B. DNA conformations and their sequence preferences. Nucleic Acids Res. 36, 3690–3706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gessner, R. V., Frederick, C. A., Quigley, G. J., Rich, A. & Wang, A. H. The molecular structure of the left-handed Z-DNA double helix at 1.0-Å atomic resolution. Geometry, conformation, and ionic interactions of d(CGCGCG). J. Biol. Chem. 264, 7921–7935 (1989).

    CAS  PubMed  Google Scholar 

  129. Khuu, P., Sandor, M., DeYoung, J. & Ho, P. S. Phylogenomic analysis of the emergence of GC-rich transcription elements. Proc. Natl Acad. Sci. USA 104, 16528–16533 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rahmouni, A. R. & Wells, R. D. Stabilization of Z DNA in vivo by localized supercoiling. Science 246, 358–363 (1989).

    Article  CAS  PubMed  Google Scholar 

  131. Ha, S. C., Lowenhaupt, K., Rich, A., Kim, Y. G. & Kim, K. K. Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437, 1183–1186 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Schroth, G. P., Chou, P. J. & Ho, P. S. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J. Biol. Chem. 267, 11846–11855 (1992).

    CAS  PubMed  Google Scholar 

  133. Wang, G., Christensen, L. A. & Vasquez, K. M. Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc. Natl Acad. Sci. USA 103, 2677–2682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao, J., Bacolla, A., Wang, G. & Vasquez, K. M. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci. 67, 43–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Palecek, E. Local supercoil-stabilized DNA structures. Crit. Rev. Biochem. Mol. Biol. 26, 151–226 (1991).

    Article  CAS  PubMed  Google Scholar 

  136. Pearson, C. E., Zorbas, H., Price, G. B. & Zannis-Hadjopoulos, M. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J. Cell Biochem. 63, 1–22 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. van Holde, K. & Zlatanova, J. Unusual DNA structures, chromatin and transcription. Bioessays 16, 59–68 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Lobachev, K. S., Rattray, A. & Narayanan, V. Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. Front. Biosci. 12, 4208–4220 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Glickman, B. W. & Ripley, L. S. Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc. Natl Acad. Sci. USA 81, 512–516 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Inagaki, H. et al. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res. 19, 191–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kurahashi, H. et al. Palindrome-mediated chromosomal translocations in humans. DNA Repair (Amst.) 5, 1136–1145 (2006).

    Article  CAS  Google Scholar 

  142. Jain, A., Wang, G. & Vasquez, K. M. DNA triple helices: biological consequences and therapeutic potential. Biochimie 90, 1117–1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Manor, H., Rao, B. S. & Martin, R. G. Abundance and degree of dispersion of genomic d(GA)n.d(TC)n sequences. J. Mol. Evol. 27, 96–101 (1988).

    Article  CAS  PubMed  Google Scholar 

  144. Bacolla, A. et al. Long homopurine* homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region. Nucleic Acids Res. 34, 2663–2675 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, X. & Haber, J. E. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol. 2, e21 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Owen, B. A. et al. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nature Struct. Mol. Biol. 12, 663–670 (2005).

    Article  CAS  Google Scholar 

  147. Rolfsmeier, M. L., Dixon, M. J. & Lahue, R. S. Mismatch repair blocks expansions of interrupted trinucleotide repeats in yeast. Mol. Cell 6, 1501–1507 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health, the American Cancer Society and the German Research Organization (DFG) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A. Zakian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Helicases tested for G4 DNA binding and unwinding (PDF 103 kb)

Related links

Related links

FURTHER INFORMATION

Virginia A. Zakian's homepage

Glossary

B-form DNA

(B-DNA). The canonical right-handed double helical secondary structure assumed by bulk DNA in vivo.

Non-B-form secondary structures

Any DNA secondary structure that differs from B-form DNA. Such structures are likely to arise at defined sequence motifs owing to local factors acting on the B-form DNA.

G-quadruplex structures

(G4 structures). Stable DNA secondary structures that can form from motifs containing tracts of tandem guanines. The guanines hydrogen bond in a planar arrangement, forming stacks connected by single-stranded DNA loops. The DNA strands can be parallel or antiparallel, and the G4 structures can form intra- or intermolecularly.

Z-DNA

Left-handed helical DNA that can form from tracts of alternating purines and pyrimidines.

Cruciforms

Four-armed DNA secondary structures, similar to Holliday junctions, that can form at inverted repeat sequences and are stabilized by DNA supercoiling.

Triplexes

Three-stranded DNA in which single-stranded DNA hydrogen bonds into the major groove of purine-rich standard B-form DNA.

Telomeres

The ends of linear chromosomes, usually consisting of GC-rich repeated DNA, with guanines clustered in the strand that forms the 3′ end of the chromosome. The G-rich strand is longer than the C-rich strand so that telomeres contain both double- and single-stranded DNA. Sequence-specific binding proteins protect both duplex and single-stranded telomeric DNA from degradation, fusions and checkpoints.

Helicase

A class of enzymes that function as molecular motors, using the energy of ATP hydrolysis to unwind base-paired DNA or RNA. Helicases can also translocate along and displace proteins from nucleic acids.

γH2Ax

A phosphorylated histone H2A variant that accumulates at regions of DNA damage.

Telomere-dependent bouquet structure

A structure formed by telomeres in early meiosis. It is associated with the nuclear scaffold.

Hoogsteen base pairing

Base pairing that differs from the normal Watson–Crick base pairing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochman, M., Paeschke, K. & Zakian, V. DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13, 770–780 (2012). https://doi.org/10.1038/nrg3296

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3296

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer