Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Revising the human mutation rate: implications for understanding human evolution

An Erratum to this article was published on 19 September 2012

This article has been updated

Abstract

It is now possible to make direct measurements of the mutation rate in modern humans using next-generation sequencing. These measurements reveal a value that is approximately half of that previously derived from fossil calibration, and this has implications for our understanding of demographic events in human evolution and other aspects of population genetics. Here, we discuss the implications of a lower-than-expected mutation rate in relation to the timescale of human evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decreasing mutation rates during great ape evolution.
Figure 2: Timeline of evidence for modern human divergence from Neanderthals and Denisovans.
Figure 3: Timeline of evidence for the divergence of modern human populations.
Figure 4: Populations and timescales involved in the origin of modern humans according to our revised model.

Similar content being viewed by others

Change history

  • 19 September 2012

    In the second paragraph of the subsection entitled 'African and non-African split' in this article, both instances of the range '60,000–120,000 years ago' were incorrectly written as '120,000–160,000 years ago'. The editors apologize for this mistake.

References

  1. Takahata, N. & Satta, Y. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc. Natl Acad. Sci. USA 94, 4811–4815 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Consortium, G. P. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  Google Scholar 

  5. Awadalla, P. et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87, 316–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. 107, 961–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nelson, M. R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337, 100–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005).

    Article  PubMed  Google Scholar 

  11. Matsumura, S. & Forster, P. Generation time and effective population size in Polar Eskimos. Proc. R. Soc. B 275, 1501–1508 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Teleki, G., Hunt, E. E. & Pfifferling, J. H. Demographic observations on the chimpanzees of Gombe National Park, Tanzania. J. Hum. Evol. 5, 559–598 (1976).

    Article  Google Scholar 

  13. Ho, S. Y. W., Lanfear, R., Bromham, L. & Phillips, M. J. Time-dependent rates of molecular evolution. Mol. Ecol. 20, 3087–3101 (2011).

    Article  PubMed  Google Scholar 

  14. Haag-liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445, 82–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Denver, D. R., Morris, K., Lynch, M. & Thomas, W. K. High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430, 679–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, S.-H., Elango, N., Warden, C., Vigoda, E. & Yi, S. V. Heterogeneous genomic molecular clocks in primates. PLoS Genet. 2, e163 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fleagle, J. G. Primate Adaptation and Evolution 2nd edn (Academic Press, 1998).

    Google Scholar 

  18. Hartwig, W. C. The Primate Fossil Record (Cambridge Univ. Press, 2002).

    Google Scholar 

  19. Scally, A. et al. Insights into hominid evolution from the gorilla genome sequence. Nature 483, 169–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Soares, P. et al. Correcting for purifying selection: an improved human mitochondrial molecular clock. Am. J. Hum. Genet. 84, 740–759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Endicott, P. & Ho, S. Y. W. A Bayesian evaluation of human mitochondrial substitution rates. Am. J. Hum. Genet. 82, 895–902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Endicott, P., Ho, S. Y. W., Metspalu, M. & Stringer, C. Evaluating the mitochondrial timescale of human evolution. Trends Ecol. Evol. 24, 515–521 (2009).

    Article  PubMed  Google Scholar 

  24. Behar, Doron, M. et al. A “copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Endicott, P., Ho, S. Y. W. & Stringer, C. Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins. J. Hum. Evol. 59, 87–95 (2010).

    Article  PubMed  Google Scholar 

  27. Mounier, A., Marchal, F. & Condemi, S. Is Homo heidelbergensis a distinct species? New insight on the Mauer mandible. J. Hum. Evol. 56, 219–246 (2009).

    Article  PubMed  Google Scholar 

  28. Stringer, C. What makes a modern human. Nature 485, 4–6 (2012).

    Article  Google Scholar 

  29. Behar, D. M. et al. The dawn of human matrilineal diversity. J. Hum. Genet. 82, 1130–1140 (2008).

    Article  CAS  Google Scholar 

  30. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Millard, A. R. A critique of the chronometric evidence for hominid fossils: I. Africa and the Near East 500–550 ka. J. Hum. Evol. 54, 848–874 (2008).

    Article  PubMed  Google Scholar 

  32. Armitage, S., Jasim, S., Marks, A. & Parker, A. The southern route “out of Africa”: evidence for an early expansion of modern humans into Arabia. Science 331, 453–456 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Rose, J. I. et al. The nubian complex of Dhofar, Oman: an African middle stone age industry in southern Arabia. PLoS ONE 6, e28239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petraglia, M. et al. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science 317, 114–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lawler, A. Did modern humans travel out of Africa via Arabia? Science 331, 387 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Gravel, S. et al. Demographic history and rare allele sharing among human populations. Proc. Natl Acad. Sci. USA 108, 11983–11988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosenberg, T. M. et al. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39, 1115–1118 (2011).

    Article  Google Scholar 

  38. Castañeda, I. S. et al. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl Acad. Sci. USA 106, 20159–20163 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Osborne, A. H. et al. A humid corridor across the Sahara for the migration of early modern humans out of Africa 120,000 years ago. Proc. Natl Acad. Sci. USA 105, 16444–16447 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pinhasi, R., Higham, T. F. G., Golovanova, L. V. & Doronichev, V. B. Revised age of late Neanderthal occupation and the end of the Middle Paleolithic in the northern Caucasus. 108, 8611–8616 (2011).

  41. Soares, P. et al. The Expansion of mtDNA Haplogroup L3 within and out of Africa. Molecular Biol. Evol. 16 Nov 2011 (doi:10.1093/molbev/msr245).

    Article  PubMed  Google Scholar 

  42. Gibbs, R., Belmont, J., Hardenbol, P. & Willis, T. The international HapMap project. Nature 63 (Suppl. 1), 29–34 (2003).

    Google Scholar 

  43. Reed, F. & Tishkoff, S. A. African human diversity, origins and migrations. Curr. Opin. Genet. Dev. 16, 597–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nature Genet. 43, 1031–1034 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Carrión, J. S., Rose, J. & Stringer, C. Early human evolution in the western Palaearctic: ecological scenarios. Quat. Sci. Rev. 30, 1281–1295 (2011).

    Article  Google Scholar 

  46. Higham, T. et al. The earliest evidence for anatomically modern humans in northwestern Europe. Nature 479, 31–34 (2011).

    Article  Google Scholar 

  47. Hoffecker, J. F. et al. From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe. J. Hum. Evol. 55, 858–870 (2008).

    Article  PubMed  Google Scholar 

  48. O'Connell, J. Dating the colonization of Sahul (Pleistocene Australia–New Guinea): a review of recent research. J. Archaeol. Sci. 31, 835–853 (2004).

    Article  Google Scholar 

  49. Shen, G., Wang, W., Cheng, H. & Edwards, R. L. Mass spectrometric U-series dating of Laibin hominid site in Guangxi, southern China. J. Archaeol. Sci. 34, 2109–2114 (2007).

    Article  Google Scholar 

  50. Shen, G., Wang, W., Wang, Q. & Zhao, J. U-Series dating of Liujiang hominid site in Guangxi, Southern China. J. Hum. 43, 817–829 (2002).

    CAS  Google Scholar 

  51. Trinkaus, E. et al. An early modern human from the Pes¸tera cu Oase, Romania. Proc. Natl Acad. Sci. USA 100, 11231–11236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rasmussen, M. et al. An aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ho, S. Y. W. & Larson, G. Molecular clocks: when times are a-changin'. Trends Genet. 22, 79–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C. & Wall, J. D. Genetic evidence for archaic admixture in Africa. Proc. Natl Acad. Sci. USA 6 Sep 2011 (doi:10.1073/pnas.1109300108).

    Article  CAS  Google Scholar 

  56. Haldane, J. The rate of spontaneous mutation of a human gene. J. Genet. 83, 235–244 (1935).

    Article  Google Scholar 

  57. Kondrashov, A. S. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mut. 21, 12–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Conrad, D. D. F. et al. Variation in genome-wide mutation rates within and between human families. Nature 43, 712–714 (2011).

    CAS  Google Scholar 

  59. Steiper, M. E. & Young, N. M. Timing primate evolution: Lessons from the discordance between molecular and paleontological estimates. Evol. Anthropol. 17, 179–188 (2008).

    Article  Google Scholar 

  60. Tyekucheva, S. et al. Human-macaque comparisons illuminate variation in neutral substitution rates. Genome Biol. 9, R76 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lanfear, R., Welch, J. J. & Bromham, L. Watching the clock: studying variation in rates of molecular evolution between species. Trends Ecol. Evol. 25, 495–503 (2010).

    Article  PubMed  Google Scholar 

  62. Locke, D. P. et al. Comparative and demographic analysis of orang-utan genomes. Nature 469, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S. & Reich, D. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103–1108 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Wegmann, D. & Excoffier, L. Bayesian inference of the demographic history of chimpanzees. Mol. Biol. Evol. 27, 1425–1435 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Zhu, T. & Yang, Z. Maximum likelihood implementation of an isolation-with-migration model with three species for testing speciation with gene flow. Mol. Biol. Evol. 13 Apr 2012 (doi:10.1093/molbev/mss118).

    Article  CAS  PubMed  Google Scholar 

  66. Becquet, C. & Przeworski, M. Learning about modes of speciation by computational approaches. Evolution 63, 2547–2562 (2009).

    Article  PubMed  Google Scholar 

  67. Strasburg, J. L. & Rieseberg, L. H. How robust are “isolation with migration” analyses to violations of the IM model? A simulation study. Mol. Biol. Evol. 27, 297–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Elango, N., Thomas, J. W., Program, N. C. S. & Yi, S. V. Variable molecular clocks in hominoids. Proc. Natl Acad. Sci. USA 103, 1370–1375 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benton, M. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Veeramah, K. R. et al. An early divergence of KhoeSan ancestors from those of other modern humans is supported by an ABC-based analysis of autosomal re-sequencing data. Mol. Biol. Evol. 29, 617–630 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge discussions with attendees at the Workshop on Coancestry, Association and Population Genomics at the Institute for Pure and Applied Mathematics, University of California, Los Angeles, November 2011, where these ideas were initially presented. We also thank T. Kivisild for comments. The authors were supported by Wellcome Trust grant WT098051.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aylwyn Scally or Richard Durbin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Revising the human mutation rate: implications for understanding human evolution (PDF 152 kb)

Glossary

Effective population sizes

(Ne). Indicate how many individuals actually contribute alleles to the next generation, as opposed to the total number of individuals in a population. The expected time to the most recent common ancestor of two individual copies of a locus is proportional to Ne.

Hominoid slowdown

The phenomenon in which shorter phylogenetic branch lengths are found within apes relative to other primate lineages.

Haplogroups

Branches of the mitochondrial DNA phylogenetic tree that comprise a collection of related haplotypes. Each haplotype represents a unique pattern of DNA substitutions.

Coalescence

When two genetic lineages find a common ancestor.

Homo heidelbergensis

Fossil hominin predominantly found in Europe but also in Africa that typically dates to 400,000–600,000 years ago and a possible ancestor of both Neanderthals and modern Homo sapiens.

Recent African origin model

(RAO model). A model of human origins in which the transition from archaic forms to modern Homo sapiens occurred solely within Africa, followed later by migration out of Africa and dispersal across Eurasia.

Khoe–San

Indigenous people of the Kalahari desert in Southern Africa.

Molecular clock

The idea that nucleotide substitutions accumulate at a constant rate over time and that this rate can therefore be used to estimate divergence times between sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scally, A., Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nat Rev Genet 13, 745–753 (2012). https://doi.org/10.1038/nrg3295

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3295

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research