Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systems-biology approaches for predicting genomic evolution

Key Points

  • Although long-term microbial evolutionary experiments have shown numerous examples of parallel phenotypic and genetic evolution, it is unclear how predictable evolution is at the level of genomes and molecular networks.

  • Predicting evolutionary events is a formidable task, not least because it requires a detailed knowledge of the range of available mutations and their phenotypic effects. This issue can be best addressed by synthesizing evolutionary theory, systems biology and molecular data

  • Recent genome-scale microbial metabolic networks are good starting points for such a synthesis. These models allow the analysis of large cellular subsystems that have clear links to changes in environmental conditions. The predictive power of these models is coupled with mechanistic insights and wide usage.

  • Models can calculate evolutionarily relevant variables that are difficult to estimate experimentally on a large-scale or across environmental conditions. In particular, they can infer epistatic interactions and mutational effects.

  • Models provide mechanistic insights into complex evolutionary phenomena from the causes of gene dispensability and the adaptation of global transcriptional programs to the evolution of minimized genomes.

  • By integrating systems models with comparative genomics, it is becoming possible to explain general trends in genome evolution. For example, these approaches reinvestigate how and why networks become more complex and why genes evolve at different rates or duplicate.

  • These models also hold the promise of transforming evolutionary biology into a more predictive discipline. They can make specific and reliable predictions on the outcome of metabolic evolution, both in short-term laboratory evolution and on macroevolutionary time scales.

  • Existing models have several limitations, however, and they are available for only a handful of species. Moreover, advances in computational systems biology should be more tightly integrated with technological advances in the fields of experimental evolution, genome engineering and automated model reconstruction.

Abstract

Is evolution predictable at the molecular level? The ambitious goal to answer this question requires an understanding of the mutational effects that govern the complex relationship between genotype and phenotype. In practice, it involves integrating systems-biology modelling, microbial laboratory evolution experiments and large-scale mutational analyses — a feat that is made possible by the recent availability of the necessary computational tools and experimental techniques. This Review investigates recent progresses in mapping evolutionary trajectories and discusses the degree to which these predictions are realistic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model and data: mutational effects, epistasis and gene content evolution.
Figure 2: Systems-biology approaches to studying evolutionary trajectories.

Similar content being viewed by others

References

  1. Stern, D. L. & Orgogozo, V. The loci of evolution: how predictable is genetic evolution? Evolution 62, 2155–2177 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stern, D. L. & Orgogozo, V. Is genetic evolution predictable? Science 323, 746–751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Nesse, R. M. & Stearns, S. C. The great opportunity: evolutionary applications to medicine and public health. Evol. Appl. 1, 28–48 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Johannes, T. W. & Zhao, H. Directed evolution of enzymes and biosynthetic pathways. Curr. Opin. Microbiol. 9, 261–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Collins, S. & Bell, G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431, 566–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hall, B. G. Predicting the evolution of antibiotic resistance genes. Nature Rev. Microbiol. 2, 430–435 (2004).

    Article  CAS  Google Scholar 

  8. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hillenmeyer, M. E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol 2, 886–897 (2004).

    Article  CAS  Google Scholar 

  13. Teusink, B., Walsh, M. C., van Dam, K. & Westerhoff, H. V. The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 23, 162–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, K. C. et al. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christensen, T. S., Oliveira, A. P. & Nielsen, J. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Syst. Biol. 3, 7 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oberhardt, M. A., Palsson, B. O. & Papin, J. A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009). This excellent review summarizes the wide range of current and potential applications of flux balance analysis and related methods.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee, J. M., Gianchandani, E. P., Eddy, J. A. & Papin, J. A. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4, e1000086 (2008).

    Article  PubMed  Google Scholar 

  18. Covert, M. W., Xiao, N., Chen, T. J. & Karr, J. R. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24, 2044–2050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jamshidi, N. & Palsson, B. O. Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J. 98, 175–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schomburg, I., Chang, A. & Schomburg, D. BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 30, 47–49 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Snitkin, E. S. et al. Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol. 9, R140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrison, R., Papp, B., Pal, C., Oliver, S. G. & Delneri, D. Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl Acad. Sci. USA 104, 2307–2312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Edwards, J. S., Ibarra, R. U. & Palsson, B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotech. 19, 125–130 (2001).

    Article  CAS  Google Scholar 

  26. Burgard, A. P., Nikolaev, E. V., Schilling, C. H. & Maranas, C. D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yizhak, K., Benyamini, T., Liebermeister, W., Ruppin, E. & Shlomi, T. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 26, i255–i260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smallbone, K., Simeonidis, E., Broomhead, D. S. & Kell, D. B. Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS J. 274, 5576–5585 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Segrè, D., Deluna, A., Church, G. M. & Kishony, R. Modular epistasis in yeast metabolism. Nature Genet. 37, 77–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. He, X., Qian, W., Wang, Z., Li, Y. & Zhang, J. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nature Genet. 42, 272–276 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Szappanos, B. et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nature Genet. 43, 656–662 (2011). This study was the first global systems-biology analysis of epistatic interactions in metabolic networks.

    Article  CAS  PubMed  Google Scholar 

  32. Papp, B., Pál, C. & Hurst, L. D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kuepfer, L., Sauer, U. & Blank, L. M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pál, C., Papp, B. & Lercher, M. J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nature Genet. 37, 1372–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Notebaart, R. A., Kensche, P. R., Huynen, M. A. & Dutilh, B. E. Asymmetric relationships between proteins shape genome evolution. Genome Biol. 10, R19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hurst, L. D. & Pál, C. in Evolutionary Genomics and Proteomics (eds Pagel, M. & Pomiankowski, A.) 141–165 (Sinauer Associates Inc., Sunderland, Massachusetts, 2007).

    Google Scholar 

  37. Orr, H. A. The genetic theory of adaptation: a brief history. Nature Rev. Genet. 6, 119–127 (2005).

    CAS  PubMed  Google Scholar 

  38. Kondrashov, A. S. Mullers ratchet under epistatic selection. Genetics 136, 1469–1473 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. de Visser, J. A. & Elena, S. F. The evolution of sex: empirical insights into the roles of epistasis and drift. Nature Rev. Genet. 8, 139–149 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Wagner, A. Robustness and Evolvability of Living Systems (Princeton Univ. Press, Princeton, 2005).

    Google Scholar 

  41. Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Wagner, A. Robustness against mutations in genetic networks of yeast. Nature Genet. 24, 355–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Blank, L. M., Kuepfer, L. & Sauer, U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 6, R49 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soyer, O. S. & Pfeiffer, T. Evolution under fluctuating environments explains observed robustness in metabolic networks. PLoS Comput. Biol. 6, e1000907 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Phillips, P. C., Otto, S. P. & Whitlock, M. C. in Epistasis and the Evolutionary Process (eds Wolf, J. B., Brodie, E. D. & Wade, M. J.) 20–38 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  46. Bandyopadhyay, S. et al. Rewiring of genetic networks in response to DNA damage. Science 330, 1385–1389 (2011).

    Article  CAS  Google Scholar 

  47. Wagner, G. P. Homologues, natural kinds and the evolution of modularity. American Zoologist 36, 36–43 (1996).

    Article  Google Scholar 

  48. Wagner, G. P. & Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    Article  PubMed  Google Scholar 

  49. Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E. & Cooper, T. F. Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332, 1193–1196 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Pál, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. Nature Rev. Genet. 7, 337–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Forster, J., Famili, I., Palsson, B. O. & Nielsen, J. Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. Omics 7, 193–202 (2003).

    Article  PubMed  Google Scholar 

  52. Burgard, A. P. & Maranas, C. D. Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol. Bioeng. 74, 364–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahadevan, R. & Schilling, C. H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Lerat, E., Daubin, V., Ochman, H. & Moran, N. A. Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 3, e130 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nowak, M. A., Boerlijst, M. C., Cooke, J. & Maynard Smith, J. Evolution of genetic redundancy. Nature 388, 167–171 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Vitkup, D., Kharchenko, P. & Wagner, A. Influence of metabolic network structure and function on enzyme evolution. Genome Biol. 7, R39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nature Rev. Genet. 8, 610–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Bilu, Y., Shlomi, T., Barkai, N. & Ruppin, E. Conservation of expression and sequence of metabolic genes is reflected by activity across metabolic states. PLoS Comp. Biol. 2, e106 (2006). This paper proposes that the range of neutral metabolic flux variation has a large impact on sequence and expression evolution.

    Article  CAS  Google Scholar 

  60. Shlomi, T., Eisenberg, Y., Sharan, R. & Ruppin, E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Covert, M. W. & Palsson, B. O. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058–28064 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002). This paper demonstrates how systems modelling can be used to predict the outcome of laboratory experimental evolution.

    Article  CAS  PubMed  Google Scholar 

  63. Fong, S. S. & Palsson, B. O. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nature Genet. 36, 1056–1058 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Pál, C. et al. Chance and necessity in the evolution of minimal metabolic networks. Nature 440, 667–670 (2006). This paper shows that 200 million years of genomic evolution is predictable by combining metabolic network analysis and evolutionary dynamics.

    Article  CAS  PubMed  Google Scholar 

  65. Herring, C. D. et al. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genet. 38, 1406–1412 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yizhak, K., Tuller, T., Papp, B. & Ruppin, E. Metabolic modeling of endosymbiont genome reduction on a temporal scale. Mol. Syst. Biol. 7, 479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moran, N. A. & Mira, A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol. 2, RESEARCH0054 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Loewe, L. A framework for evolutionary systems biology. BMC Syst. Biol. 3, 27 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jamshidi, N., Wiback, S. J. & Palsson, B. B. In silico model-driven assessment of the effects of single nucleotide polymorphisms (SNPs) on human red blood cell metabolism. Genome Res. 12, 1687–1692 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotech. 28, 977–982.

    Article  CAS  PubMed  Google Scholar 

  72. Teusink, B., Westerhoff, H. V. & Bruggeman, F. J. Comparative systems biology: from bacteria to man. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 518–532 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Oberhardt, M. A., Puchalka, J., Martins dos Santos, V. A. & Papin, J. A. Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput. Biol. 7, e1001116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harvey, P. H. & Purvis, A. Comparative methods for explaining adaptations. Nature 351, 619–624 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Navlakha, S. & Kingsford, C. Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comput. Biol. 7, e1001119 (2011). In this paper, the authors propose several novel algorithms to reconstruct the evolutionary history of microbial cellular networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klitgord, N. & Segre, D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 6, e1001002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010). By combining metabolic network modelling and laboratory experiments, the authors of this paper show mutual compensation of metabolic mutants by cross-feeding of essential metabolites.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Borenstein, E., Kupiec, M., Feldman, M. W. & Ruppin, E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl Acad. Sci. USA 105, 14482–14487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Borenstein, E. & Feldman, M. W. Topological signatures of species interactions in metabolic networks. J. Comput. Biol. 16, 191–200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, D. S. et al. Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. J. Bacteriol. 191, 4015–4024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009). This paper is major step towards the automated, large-scale generation of combinatorial genomic diversity for directed evolution of cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ofria, C. & Wilke, C. O. Avida: a software platform for research in computational evolutionary biology. Artif. Life 10, 191–229 (2004).

    Article  PubMed  Google Scholar 

  83. Adami, C. Digital genetics: unravelling the genetic basis of evolution. Nature Rev. Genet. 7, 109–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Li, F., Long, T., Lu, Y., Ouyang, Q. & Tang, C. The yeast cell-cycle network is robustly designed. Proc. Natl Acad. Sci. USA 101, 4781–4786 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Whelan, K. E. & King, R. D. Using a logical model to predict the growth of yeast. BMC Bioinformatics 9, 97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mahadevan, R., Edwards, J. S. & Doyle, F. J. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shlomi, T., Cabili, M. N., Herrgard, M. J., Palsson, B. O. & Ruppin, E. Network-based prediction of human tissue-specific metabolism. Nature Biotech. 26, 1003–1010 (2008).

    Article  CAS  Google Scholar 

  89. Kummel, A., Panke, S. & Heinemann, M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2, 2006.0034 (2006).

  90. Isalan, M. et al. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wagner, A. Neutralism and selectionism: a network-based reconciliation. Nature Rev. Genet. 9, 965–974 (2008). In this paper, the author proposes a reconciliation in which neutral mutations prepare the ground for later evolutionary adaptations.

    Article  CAS  PubMed  Google Scholar 

  92. Matias Rodrigues, J. F. & Wagner, A. Evolutionary plasticity and innovations in complex metabolic reaction networks. PLoS Comput. Biol. 5, e1000613 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. D'Ari, R. & Casadesus, J. Underground metabolism. Bioessays 20, 181–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61, 995–1016 (2007).

    Article  PubMed  Google Scholar 

  96. Conant, G. C. & Wagner, A. Convergent evolution of gene circuits. Nature Genet. 34, 264–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Deutschbauer, A. M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mo, M. L., Palsson, B. O. & Herrgard, M. J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous reviewers and S. G. Oliver for their valuable comments on the manuscript. This work was supported by grants from the European Research Council (C.P.), the Wellcome Trust (C.P.), the 'Lendület Program' of the Hungarian Academy of Sciences (B.P.), the International Human Frontier Science Program Organization and the Hungarian Scientific Research Fund (B.P and C.P). R.N. is supported by The Netherlands Genomics Initiative (NGI – Horizon grant) and The Netherlands Organisation for Scientific Research (NWO - VENI Grant).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Balázs Papp, Richard A. Notebaart or Csaba Pál.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Balázs Papp and Csaba Pál's homepage

BiGG, a database of large-scale metabolic reconstructions

BRENDA, the enzyme information system

Kyoto Encyclopedia of Genes and Genomes (KEGG)

Nature Reviews Genetics series on Modelling

The openCOBRA Project, a Matlab toolbox for constraint-based modelling

Glossary

Epistatic interaction

Non-independent effect of mutations on a phenotype. Epistasis is negative when a genotype with two mutations has a lower phenotype value or positive when it has a higher value than would be expected from the product of the single mutant values.

Graph-theoretical approaches

The study of graphs. A graph provides an abstract representation of a biological or physical system in which components are represented by nodes that are connected to each other by edges (links).

Robustness

Mutational robustness describes the resilience of phenotypes to genetic perturbations.

Gene dispensability

A measure that is inversely related to the overall importance of a gene. It is usually approximated by the fitness of the corresponding gene-knockout strain under laboratory conditions.

Metabolic fluxes

Turnover rate of substrates through metabolic reactions or pathways.

Flux balance analysis

(FBA). A mathematical approach for analysing the behaviour of large-scale metabolic networks. It does not require knowledge of metabolite concentration or enzyme kinetic details.

Synthetic lethal interaction

A form of epistasis between two genes in which the double mutant shows a no-growth phenotype that is not exhibited by either single mutant.

Trimodal

Trimodality is a statistical term for a distribution that has three modes.

Pleiotropy

The phenomenon of one mutation affecting multiple traits.

(Nearly) neutral mutations

A neutral mutation is one that has no fitness effect. A mutation is 'nearly' neutral when its fitness effect is too small to be governed by selection, and hence its fate is determined largely by genetic drift.

Adaptive landscapes

Visualizations of the relationship between genotype and fitness. The plane of the landscape contains all possible genotypes in such a way that similar genotypes are located close to each other on the plane and the height of the landscape reflects the fitness of the corresponding genotype.

Trade-off

Two traits are in a trade-off relationship when an increase in fitness owing to a change in one trait is opposed by a decrease in fitness owing to a concomitant change in the second trait.

Historical contingency

This term describes the situation in which future evolutionary alternatives of a population depend on its prior history.

Cross-feeding

This describes the situation in which one species or strain degrades a primary resource and secretes a chemical compound that is used as a substrate by another species or strain.

Multiplex automated genome engineering

An automated and efficient experimental technique to simultaneously modify many targeted genomic locations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papp, B., Notebaart, R. & Pál, C. Systems-biology approaches for predicting genomic evolution. Nat Rev Genet 12, 591–602 (2011). https://doi.org/10.1038/nrg3033

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing