Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Learning about human population history from ancient and modern genomes

Key Points

  • Studies of human population history have the goal of finding out what happened in our past, in terms of population origins, migrations, relationships, admixture and changes in population size — that is, the demographic history of populations. Genome-wide data sets are now transforming this field.

  • The study of fossil DNA, or ancient DNA, has been revolutionized by technological developments in high-throughput sequencing. Three ancient hominin nuclear genome sequences have now been published: from a Neanderthal; from a recently discovered extinct hominin group from Siberia, Denisovans; and from a native Greenlander (Saqqaq).

  • Many new genome sequences from modern humans have been obtained by the 1000 Genomes Project, as well as by several other human genome and exome sequencing efforts.

  • Genome-wide SNP data are becoming increasingly available from many populations of anthropological interest.

  • Increases in computational power have enabled more sophisticated use of genome-scale data. There have been two important advances for human population studies: unsupervised analyses and model-based analyses.

  • Issues that can be addressed using genome-wide data include the African origin of modern humans and the number of dispersals.

Abstract

Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model-based analyses of demographic history.
Figure 2: High-throughput sequencing of ancient DNA.
Figure 3: Distinguishing ancient from modern DNA.
Figure 4: Dispersal of modern humans from Africa.

Similar content being viewed by others

References

  1. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010). The first genome sequence from an extinct hominin, Neanderthals, demonstrating a signal of Neanderthal admixture in the genome of all studied non-African modern humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010). The first genome sequence from an ancient human. This study demonstrates the feasibility of obtaining high-quality genome sequences from permafrost-preserved human hair and suggests the occurrence of a migration event that is not evident from contemporary human populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010). The second genome sequence from an extinct hominin, Denisovans, demonstrating that they were a sister group to Neanderthals and that they admixed with the ancestors of Melanesians.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Durbin, R. M. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nature Genet. 42, 969–972 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Schuster, S. C. et al. Complete Khoisan and Bantu genomes from southern Africa. Nature 463, 943–947 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Henn, B. M. et al. Hunter-gatherer genomic diversity suggests a southern African origin for modern humans. Proc. Natl Acad. Sci. USA 108, 5154–5162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Lopez Herraez, D. et al. Genetic variation and recent positive selection in worldwide human populations: evidence from nearly 1 million SNPs. PLoS ONE 4, e7888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009). In addition to using genome-wide SNP data to provide a detailed genetic history of India, this study introduced several important methods for analysing such data. These methods were used in subsequent studies to demonstrate an admixture signal in modern humans with Neanderthals and Denisovans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xing, J. et al. Toward a more uniform sampling of human genetic diversity: a survey of worldwide populations by high-density genotyping. Genomics 96, 199–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Wollstein, A. et al. Demographic history of Oceania inferred from genome-wide data. Curr. Biol. 20, 1983–1992 (2010). These authors used genome-wide SNP data and a novel approach for accounting for ascertainment bias to infer multiple dispersals of humans to Asia and Oceania, and to investigate the complicated admixture history of Remote Oceanian populations.

    Article  CAS  PubMed  Google Scholar 

  14. Jobling, M. A. & Tyler-Smith, C. The human Y chromosome: an evolutionary marker comes of age. Nature Rev. Genet. 4, 598–612 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Pakendorf, B. & Stoneking, M. Mitochondrial DNA and human evolution. Annu. Rev. Genomics Hum. Genet. 6, 165–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Miller, W. et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456, 387–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Lander, E. S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Paabo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. & Wilson, A. C. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Paabo, S. Molecular cloning of Ancient Egyptian mummy DNA. Nature 314, 644–645 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Green, R. E. et al. The Neandertal genome and ancient DNA authenticity. EMBO J. 28, 2494–2502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poinar, H. N. et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Paabo, S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl Acad. Sci. USA 86, 1939–1943 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krause, J. et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 439, 724–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maricic, T., Whitten, M. & Paabo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Briggs, A. W. et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325, 318–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Krings, M. et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Krause, J. et al. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr. Biol. 20, 231–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Gilbert, M. T. et al. Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science 320, 1787–1789 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Wall, J. D. & Kim, S. K. Inconsistencies in Neanderthal genomic DNA sequences. PLoS Genet. 3, 1862–1866 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hofreiter, M., Jaenicke, V., Serre, D., Haeseler Av, A. & Paabo, S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 29, 4793–4799 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brotherton, P. et al. Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res. 35, 5717–5728 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Adler, C. J., Haak, W., Donlon, D. & Cooper, A. Survival and recovery of DNA from ancient teeth and bones. J. Arch. Sci. 38, 956–964 (2011).

    Article  Google Scholar 

  38. Paten, B., Herrero, J., Beal, K., Fitzgerald, S. & Birney, E. Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res. 18, 1814–1828 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nielsen, R. Population genetic analysis of ascertained SNP data. Hum. Genomics 1, 218–224 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albrechtsen, A., Nielsen, F. C. & Nielsen, R. Ascertainment biases in SNP chips affect measures of population divergence. Mol. Biol. Evol. 27, 2534–2547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clark, A. G., Hubisz, M. J., Bustamante, C. D., Williamson, S. H. & Nielsen, R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 15, 1496–1502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lao, O. et al. Correlation between genetic and geographic structure in Europe. Curr. Biol. 18, 1241–1248 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98–101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nature Genet. 39, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Burbano, H. A. et al. Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328, 723–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Reich, D., Price, A. L. & Patterson, N. Principal component analysis of genetic data. Nature Genet. 40, 491–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000). This paper introduced the widely used STRUCTURE program for inferring ancestry and admixture from multi-locus data at the individual level rather than the population level.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang, H., Peng, J., Wang, P. & Risch, N. J. Estimation of individual admixture: analytical and study design considerations. Genet. Epidemiol. 28, 289–301 (2005).

    Article  PubMed  Google Scholar 

  50. Beaumont, M. A. & Rannala, B. The Bayesian revolution in genetics. Nature Rev. Genet. 5, 251–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Hey, J. & Machado, C. A. The study of structured populations — new hope for a difficult and divided science. Nature Rev. Genet. 4, 535–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Kuhner, M. K. Coalescent genealogy samplers: windows into population history. Trends Ecol. Evol. 24, 86–93 (2009).

    Article  PubMed  Google Scholar 

  53. Hey, J. Isolation with migration models for more than two populations. Mol. Biol. Evol. 27, 905–920 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Hey, J. & Nielsen, R. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc. Natl Acad. Sci. USA 104, 2785–2790 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bertorelle, G. & Excoffier, L. Inferring admixture proportions from molecular data. Mol. Biol. Evol. 15, 1298–1311 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Bryc, K. et al. Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc. Natl Acad. Sci. USA 107, 786–791 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Hellenthal, G., Auton, A. & Falush, D. Inferring human colonization history using a copying model. PLoS Genet. 4, e1000078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moorjani, P. et al. The history of African gene flow into Southern Europeans, Levantines, and Jews. PLoS Genet. 7, e1001373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Price, A. L. et al. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet. 5, e1000519 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pugach, I., Matveyev, R., Wollstein, A., Kayser, M. & Stoneking, M. Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol. 12, R19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Arbogast, B., Edwards, S., Wakeley, J., Beerlie, P. & Slowinski, J. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33, 707–740 (2002).

    Article  Google Scholar 

  62. Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Ingman, M., Kaessmann, H., Paabo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Underhill, P. A. et al. Y chromosome sequence variation and the history of human populations. Nature Genet. 26, 358–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Lohmueller, K. E., Bustamante, C. D. & Clark, A. G. Methods for human demographic inference using haplotype patterns from genomewide single-nucleotide polymorphism data. Genetics 182, 217–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mellars, P. Going east: new genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 313, 796–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Schaffner, S. F. et al. Calibrating a coalescent simulation of human genome sequence variation. Genome Res. 15, 1576–1583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Prugnolle, F., Manica, A. & Balloux, F. Geography predicts neutral genetic diversity of human populations. Curr. Biol. 15, R159–R160 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stoneking, M. Human origins. The molecular perspective. EMBO Rep. 9 (Suppl. 1), 46–50 (2008).

    Article  CAS  Google Scholar 

  71. Lahr, M. & Foley, R. Multiple dispersals and modern human origins. Evol. Anthropol. 3, 48–60 (1994).

    Article  Google Scholar 

  72. Grun, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).

    Article  PubMed  Google Scholar 

  73. Lahr, M. M. & Foley, R. Multiple dispersals and modern human origins. Evol. Anthropol. 3, 48–60 (1994).

    Article  Google Scholar 

  74. Gray, R. D., Drummond, A. J. & Greenhill, S. J. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323, 479–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Kirch, P. Peopling of the Pacific: a holistic anthropological perspective. Annu. Rev. Anthropol. 39, 131–148 (2010).

    Article  Google Scholar 

  76. Donohue, M. & Denham, T. Farming and language in Island Southeast Asia. Curr. Anthropol. 51, 223–256 (2010).

    Article  Google Scholar 

  77. Terrell, J. in Lapita: Ancestors and Descendants (eds Sheppard, P., Thomas, T. & Summerhayes, G.) 255–269 (Publishing Press Ltd, Auckland, 2009).

    Google Scholar 

  78. Kayser, M. The human genetic history of Oceania: near and remote views of dispersal. Curr. Biol. 20, R194–R201 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Kayser, M. et al. Melanesian and Asian origins of Polynesians: mtDNA and Y chromosome gradients across the Pacific. Mol. Biol. Evol. 23, 2234–2244 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Soares, P. et al. Ancient voyaging and Polynesian origins. Am. J. Hum. Genet. 88, 239–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Friedlaender, J. S. et al. The genetic structure of Pacific Islanders. PLoS Genet. 4, e19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kayser, M. et al. Genome-wide analysis indicates more Asian than Melanesian ancestry of Polynesians. Am. J. Hum. Genet. 82, 194–198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chaubey, G. et al. Population genetic structure in Indian Austroasiatic speakers: the role of landscape barriers and sex-specific admixture. Mol. Biol. Evol. 28, 1013–1024 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Haak, W. et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol. 8, e1000536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haak, W. et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310, 1016–1018 (2005).

    CAS  PubMed  Google Scholar 

  86. Sampietro, M. L. et al. Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe. Proc. Biol. Sci. 274, 2161–2167 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bramanti, B. et al. Genetic discontinuity between local hunter-gatherers and central Europe's first farmers. Science 326, 137–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Fagundes, N. J., Kanitz, R. & Bonatto, S. L. A reevaluation of the Native American mtDNA genome diversity and its bearing on the models of early colonization of Beringia. PLoS ONE 3, e3157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hubbe, M., Neves, W. A. & Harvati, K. Testing evolutionary and dispersion scenarios for the settlement of the new world. PLoS ONE 5, e11105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kitchen, A., Miyamoto, M. M. & Mulligan, C. J. A three-stage colonization model for the peopling of the Americas. PLoS ONE 3, e1596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mulligan, C. J., Kitchen, A. & Miyamoto, M. M. Updated three-stage model for the peopling of the Americas. PLoS ONE 3, e3199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ray, N. et al. A statistical evaluation of models for the initial settlement of the american continent emphasizes the importance of gene flow with Asia. Mol. Biol. Evol. 27, 337–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Cann, H. M. et al. A human genome diversity cell line panel. Science 296, 261–262 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Macaulay, V. et al. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science 308, 1034–1036 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Thangaraj, K. et al. Reconstructing the origin of Andaman Islanders. Science 308, 996 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Gunnarsdottir, E. D., Li, M., Bauchet, M., Finstermeier, K. & Stoneking, M. High-throughput sequencing of complete human mtDNA genomes from the Philippines. Genome Res. 21, 1–11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Endicott, P. et al. The genetic origins of the Andaman Islanders. Am. J. Hum. Genet. 72, 178–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Forster, P. Ice Ages and the mitochondrial DNA chronology of human dispersals: a review. Phil. Trans. R. Soc. Lond. B 359, 255–264 (2004).

    Article  Google Scholar 

  99. Cordaux, R. & Stoneking, M. South Asia, the Andamanese, and the genetic evidence for an “early” human dispersal out of Africa. Am. J. Hum. Genet. 72, 1586–1590; author reply 1590–1593 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. The HUGO Pan-Asian SNP Consortium. Mapping human genetic diversity in Asia. Science 326, 1541–1545 (2009).

  101. Wall, J. D., Lohmueller, K. E. & Plagnol, V. Detecting ancient admixture and estimating demographic parameters in multiple human populations. Mol. Biol. Evol. 26, 1823–1827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Krause, J. From genes to genomes: what is new in ancient DNA? MGfU 19, 11–33 (2010).

    Google Scholar 

  103. Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genet. 23, 147 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Briggs, B. Pakendorf and S. Pääbo for helpful comments. The work of the authors is supported by the Max Planck Society (M.S.) and the University of Tübingen, Germany (J.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Stoneking.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Mark Stoneking's homepage

Johannes Krause's homepage

1000 Genomes Project

CEPH Human Genetic Diversity Panel

Nature Reviews Genetics series on Applications of next-generation sequencing

Glossary

HapMap

An international project with the goal of identifying genetic similarities and differences among human populations. The project has made large amounts of data publicly available.

Admixture

Gene flow between two (or more) groups that have been separated for a long enough period of time to be genetically distinct.

Demographic history

The history of events that influence the genetic structure of a population, including population size changes, divergence from other populations and migration (gene flow).

SNP arrays

Microarrays that are used to simultaneously genotype several thousand to several hundred thousand SNPs for a single sample.

Hominin

Modern humans, their fossil ancestors, and extinct relatives thereof, up to (but not including) chimpanzees.

Denisovans

Archaic hominins represented by fossil remains from Denisova Cave in southern Siberia; genome sequence data indicate that Denisovans are a sister group to Neanderthals.

Saqqaq

The Saqqaq culture is the archaeological designation of the earliest culture of West and South East Greenland. A 4,000-year-old native Greenlander from the Saqqaq culture, whose hair sample was preserved in permafrost, was used to obtain the first genome sequence from an ancient modern human.

Endogenous DNA

In the ancient DNA field, endogenous DNA usually refers to the original DNA from the actual organism that was sampled. In some publications, endogenous DNA includes the microbial DNA that is common to most ancient samples versus exogenous DNA that is brought onto or into the sample after excavation.

Nucleotide misincorporations

Erroneous incorporations of nucleotides during the synthesis of the complementary DNA strand by a polymerase (for example, during PCR) that are caused by chemical modifications of the template nucleotides. For example, deamination of cytosine leads to uracil, which is read by the DNA polymerase as thymine and as a consequence instead of a guanine an adenine is incorporated into the complementary strand.

Sequencing library

This consists of DNA samples that have been prepared for high-throughput DNA sequencing by adding artificial oligonucleotides to both ends of the template molecules. The adaptors can be used to bind the DNA to a surface and clonally amplify each molecule before or during high-throughput DNA sequencing.

Post-mortem chemical damage

Chemical modifications to DNA that happen after the death of the organism: for example, hydrolytic deamination of cytosine.

Cytosine deamination

In the context of ancient DNA, a post-mortem hydrolytic chemical reaction that changes cytosine to uracil, releasing ammonia in the process.

Ascertainment bias

Sampling bias that arises from how SNPs are chosen for inclusion on SNP arrays; SNPs that are known to be polymorphic in a particular population will overestimate genetic variation in that population relative to other populations.

Hybridization capture

A method that allows selective capture of genomic regions of interest from a complex DNA sample before DNA sequencing. It is based on hybridization between DNA fragments in the sample and chosen 'bait' sequences.

Pleistocene

Geological epoch that spans the time period from about 2.5 million years ago to 12,000 years ago.

Unsupervised analyses

Analyses that are done at the individual instead of the population level and do not require that population labels are applied to individuals.

Ancestry components

A pre-defined number of subgroups with distinctive allele frequencies, inferred from genome-wide data, which are then used to assign the ancestry of each individual without specifying the population to which the individual belongs.

Model-based analyses

Analyses that specify demographic models, investigate which demographic model best fits the genetic data and infer parameters of interest (such as population size changes, divergence times and migration events) for the best-fitting model.

Summary statistics

Statistics that summarize various aspects of genetic data, such as heterozygosity (for within population variation) or FST values (for between population variation). Summary statistics are conventionally used to investigate the fit of demographic models to the actual genetic data.

Sahul

The combined Australia–New Guinea landmass that existed periodically during cold periods in the Pleistocene, including during the initial colonization of Australia and New Guinea about 50,000 years ago, up until rising sea levels separated Australia from New Guinea about 8,000 years ago.

Bougainville

A large island in the Pacific that politically is part of Papua New Guinea but geographically is part of the main Solomon Islands chain.

Austronesian

The most geographically widespread family of languages, extending from Taiwan through mainland and island southeast Asia, Near Oceania, Remote Oceania and even Madagascar.

Near Oceania

Refers to New Guinea and nearby offshore islands, including the main Solomon Islands chain (excluding Santa Cruz); Near Oceania was first colonized by humans at least 40,000 years ago, whereas Remote Oceania (Santa Cruz and all islands to the east) was only colonized by humans beginning about 3,200 years ago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoneking, M., Krause, J. Learning about human population history from ancient and modern genomes. Nat Rev Genet 12, 603–614 (2011). https://doi.org/10.1038/nrg3029

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3029

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research