Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancer function: new insights into the regulation of tissue-specific gene expression

Key Points

  • Enhancers are specified by distinct chromatin features that may contribute to the repertoire of epigenetic mechanisms responsible for cellular memory and cell type-specific gene expression.

  • The presence of H3.3/H2A.Z histone variants contributes to nucleosome plasticity at enhancers and facilitates transcription factor binding.

  • H3K4me1 (histone 3 monomethylated at lysine 4) appears to be a key chromatin modification at many enhancers. These enhancer sequences are further marked by combinatorial patterns of histone modification or occupancy by CBP or p300, indicative of their context-dependent function.

  • The presence of H3K27ac (histone 3 acetylated at lysine 27) or H3K27me3 (histone 3 trimethylated at lysine 27) specifies whether an enhancer is active or poised for activation, respectively.

  • Extensive intra- and interchromosomal interactions between enhancers and promoters are detected at many co-regulated genes during development.

  • Chromatin looping between enhancer and promoter are in part mediated by the interaction between specific transcription factors, CCCTC-binding factor, mediator and/or the cohesin complex.

  • Transcription of long intergenic ncRNAs from some enhancers can regulate expression of their neighbouring genes by targeting specific chromatin modifying factors to their promoter regions.

  • The FOS-like antigen 1 (FOSL1) enhancer appears to facilitate the recruitment of histone-modifying complexes that trigger RNA polymerase II release from promoter-proximal pausing, rather than initiation, and productive transcription from its cognate promoter.

Abstract

Enhancer function underlies regulatory processes by which cells establish patterns of gene expression. Recent results suggest that many enhancers are specified by particular chromatin marks in pluripotent cells, which may be modified later in development to alter patterns of gene expression and cell differentiation choices. These marks may contribute to the repertoire of epigenetic mechanisms responsible for cellular memory and determine the timing of transcription factor accessibility to the enhancer. Mechanistically, cohesin and non-coding RNAs are emerging as crucial players responsible for facilitating enhancer–promoter interactions at some genes. Surprisingly, these interactions may be required not only to facilitate initiation of transcription but also to activate the release of RNA polymerase II (RNAPII) from promoter-proximal pausing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional regulatory elements in metazoans.
Figure 2: Many functional enhancers contain dynamic nucleosomes.
Figure 3: Chromatin signatures at enhancers act as epigenetic signals for gene induction.
Figure 4: Cohesins stabilize enhancer–promoter interactions by different strategies.
Figure 5: Non-coding RNAs mediate enhancer function.
Figure 6: Crosstalk between histones at enhancers and promoters regulates RNAPII elongation.

Similar content being viewed by others

References

  1. Levine, M. Transcriptional enhancers in animal development and evolution. Curr. Biol. 20, R754–R763 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maston, G. A., Evans, S. K. & Green, M. R. Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Geyer, P. K., Green, M. M. & Corces, V. G. Tissue-specific transcriptional enhancers may act in trans on the gene located in the homologous chromosome: the molecular basis of transvection in Drosophila. EMBO J. 9, 2247–2256 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Haugen, S. P., Ross, W. & Gourse, R. L. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nature Rev. Microbiol. 6, 507–519 (2008).

    Article  CAS  Google Scholar 

  7. Malik, S. & Roeder, R. G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nature Rev. Genet. 11, 761–772 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Schoenfelder, S., Clay, I. & Fraser, P. The transcriptional interactome: gene expression in 3D. Curr. Opin. Genet. Dev. 20, 127–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Cui, K. R. et al. chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009). Genome-wide mapping of histone modifications coupled with gene expression analysis in multiple cell lines reveal that many enhancers are highly enriched in H3K4me1 and H3K27ac, and this enrichment correlates with cell type-specific gene expression programmes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010). The authors identify a class of lincRNAs, in multiple cell lines, with enhancer-like function that is necessary for the expression of their neighbouring protein coding genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009). This study shows that H3S10 phosphorylation at the FOSL1 enhancer triggers a cascade of events involving multiple histone modifications and recruitment of protein complexes that activate transcriptional elongation.

    Article  CAS  PubMed  Google Scholar 

  15. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  Google Scholar 

  16. Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nature Rev. Genet. 9, 15–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Mito, Y., Henikoff, J. G. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Albert, I. et al. Translational and rotational settings of H2A.Z. nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Henikoff, S., Henikoff, J. G., Sakai, A., Loeb, G. B. & Ahmad, K. Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res. 19, 460–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin, C. Y. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A. Z. Genes Dev. 21, 1519–1529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Z. B. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Jin, C. Y. et al. H3.3/H2A.Z. double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nature Genet. 41, 941–945 (2009). This study demonstrates that nucleosome-free regions at enhancers are occupied by histone variants H3.3 and H2A.Z, and that their presence correlates with enhancer activity.

    Article  CAS  PubMed  Google Scholar 

  27. He, H. S. H. S. et al. Nucleosome dynamics define transcriptional enhancers. Nature Genet. 42, 343–347 (2010). The authors identify a class of androgen-responsive enhancers whose H3K4me2-marked nucleosomes shift upon stimulus to allow the binding of specific transcription factors.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Y. C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nature Immunol. 11, 635–643 (2010).

    Article  CAS  Google Scholar 

  29. Bedford, D. C., Kasper, L. H., Fukuyama, T. & Brindle, P. K. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 5, 9–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Visel, A. et al. ChIP–seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009). Using transgenic mouse assays and ChIP–seq to map the location of p300 in different mouse tissues, the authors demonstrate that in vivo binding of p300 is a highly accurate predictor of tissue-specific enhancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blow, M. J. et al. ChIP-Seq identification of weakly conserved heart enhancers. Nature Genet. 42, 806–810 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008). This work demonstrates that H3K4me1 and H3K4me2 marks at selected enhancers constitute lineage-specific FOXA1 recruitment sites in the chromatin, where FOXA1 can interact synergistically with either androgen receptor or oestrogen receptor transcription factors to turn on distinct developmental programmes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roh, T. Y., Cuddapah, S. & Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev. 19, 542–552 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roh, T. Y., Wei, G., Farrell, C. M. & Zhao, K. Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Res. 17, 74–81 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mizuguchi, G. et al. ATP-Driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Molecular Cell 25, 15–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Vastenhouw, N. L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liber, D. et al. Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell Stem Cell 7, 114–126 (2010). This paper demonstrates a factor relay model whereby ESC factors SOX2 and FOXD3 establish active epigenetic marks at tissue-specific elements before being replaced by cell type-specific factors as cells differentiate.

    Article  CAS  PubMed  Google Scholar 

  41. Drane, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA. 107, 14075–14080 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hartley, P. D. & Madhani, H. D. Mechanisms that Specify Promoter Nucleosome Location and Identity. Cell 137, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Orford, K. et al. Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev. Cell 14, 798–809 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kleinjan, D. A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Engel, J. D. & Tanimoto, K. Looping, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell 100, 499–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13, 2465–2477 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Sexton, T., Bantignies, F. & Cavalli, G. Genomic interactions: chromatin loops and gene meeting points in transcriptional regulation. Semin. Cell Dev. Biol. 20, 849–855 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. West, A. G. & Fraser, P. Remote control of gene transcription. Hum. Mol. Genet. 14, R101–R111 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Chambeyron, S. & Bickmore, W. A. Does looping and clustering in the nucleus regulate gene expression? Curr. Opin. Cell Biol. 16, 256–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA interactions. Nature Methods 4, 895–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Vassetzky, Y. et al. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol. Biol. 567, 171–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Miele, A. & Dekker, J. Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C). Methods Mol. Biol. 464, 105–121 (2009).

    Article  PubMed  Google Scholar 

  59. Miele, A. & Dekker, J. Long-range chromosomal interactions and gene regulation. Mol. Biosyst. 4, 1046–1057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bulger, M. & Groudine, M. Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev. Biol. 339, 250–257

  61. Drissen, R. et al. The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev. 18, 2485–2490 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vakoc, C. R. et al. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  64. Cai, S., Lee, C. C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nature Genet. 38, 1278–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature Genetics 42, 53–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in, S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nasmyth, K. & Haering, C. H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Rollins, R. A., Morcillo, P. & Dorsett, D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152, 577–593 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rollins, R. A., Korom, M., Aulner, N., Martens, A. & Dorsett, D. Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol. Cell Biol. 24, 3100–3111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dorsett, D. et al. Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132, 4743–4753 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Schuldiner, O. et al. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev. Cell 14, 227–238 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pauli, A. et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell 14, 239–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Horsfield, J. A. et al. Cohesin-dependent regulation of Runx genes. Development 134, 2639–2649 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Rubio, E. D. et al. CTCF physically links cohesin to chromatin. Proc. Natl Acad. Sci. USA 105, 8309–8314 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stedman, W. et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 27, 654–666 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Mishiro, T. et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 28, 1234–1245 (2009). The authors demonstrate that insulators that are bound by CTCF and cohesin establish chromatin loops at the human APO gene cluster that are necessary for gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nativio, R. et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 5, e1000739 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hou, C., Dale, R. & Dean, A. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl Acad. Sci. USA 107, 3651–3656 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010). This work demonstrates that DNA looping formed by physical interaction between Mediator and cohesin complexes at promoter and enhancer elements is required for expression of specific genes in ESCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lei, E. P. & Corces, V. G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genet. 38, 936–941 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Yao, H. et al. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev. 24, 2543–2555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature (in the press). This paper shows that HOTTIP lincRNA recruitment of the WDR5–MLL histone methyltransferase complex to target promoter regions is required for the activation of 5′ HOXA genes.

  89. Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Ivaldi, M. S., Karam, C. S. & Corces, V. G. Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev. 21, 2818–2831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zippo, A., De Robertis, A., Serafini, R. & Oliviero, S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nature Cell Biol. 9, 932–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Karam, C. S., Kellner, W. A., Takenaka, N., Clemmons, A. W. & Corces, V. G. 14-3-3 mediates histone cross-talk during transcription elongation in Drosophila. PLoS Genet. 6, e1000975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Core, L. J. & Lis, J. T. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 319, 1791–1792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bajpai, R. et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463, 958–962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng, X. & Blumenthal, R. M. Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 49, 2999–3008 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nature Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Levine, M., Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Wood and C. Hou for suggestions on the manuscript. Work in the authors' laboratory is supported by the Public Health Service Award GM35463 from the US National Institutes of Health and by the National Science Foundation Award MCB-0618972.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Corces.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Victor G. Corces' homepage

Glossary

Mediator

The ~30-subunit co-activator complex that is necessary for successful transcription at class II promoters of metazoans genes. Mediator coordinates the signals between enhancers and the general transcription machinery through its interaction with RNA polymerase II and site-specific factors.

Basal transcription

Low levels of transcription that can occur in the absence of an activator.

Pioneer transcription factor

The first transcription factor to access a regulatory region of tissue-specific genes. Its association with chromatin initiates decompaction of nucleosomes and the cascade of events that culminates in transcriptional activation.

Chromosome conformation capture

(3C). A technique used to study long-distance interactions between genomic regions, which in turn can be used to study the three-dimensional architecture of chromosomes within a cell nucleus.

Locus control region

(LCR). Cis-acting element that organizes a gene cluster into an active chromatin domain and enhances transcription in a tissue-specific manner.

Transcription factory

A nuclear subcompartment that is rich in RNA polymerases and transcription factors where dispersed genes gather to become active.

GENCODE

The GENCODE annotation aims to identify and map all gene features within the ENCODE (Encyclopedia of DNA Elements) regions by experimental validation. The results will include protein-coding genes with alternatively transcribed variants, non-coding RNAs and pseudogenes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, CT., Corces, V. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12, 283–293 (2011). https://doi.org/10.1038/nrg2957

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2957

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research