Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-coding RNAs in human disease

Key Points

  • The non-protein-coding genome is gaining prominence in biology and medicine. The most well-studied non-coding RNAs (ncRNAs) are microRNAs (miRNAs), but many other types of ncRNAs also have major roles in cellular homeostasis and disease.

  • These additional ncRNAs include PIWI-interacting RNAs (piRNAs), ncRNAs that are associated with transcription start sites, small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs), such as large intergenic non-coding RNAs (lincRNAs) and transcribed ultraconserved regions (T-UCRs). The list is not exclusive, and in many instances there is no clear molecular distinction between the classes, in part because many ncRNAs have unknown functions. However, there are some well-studied lncRNAs, such as homeobox (HOX) transcript antisense RNA (HOTAIR) and X-inactivation specific transcript (XIST), which are involved in transcriptional regulation.

  • The recognition of the role of ncRNAs in disease has been derived from the existence of aberrant miRNA expression profiles in human cancer, where these transcripts, and their processing machineries, undergo genetic and epigenetic disruption. Other ncRNAs, such as T-UCRs and lncRNAs, are show aberrant expression levels in transformed cells.

  • Cancer showed the way, but ncRNAs are involved in most human diseases, from neurological disorders to cardiovascular problems. Specific miRNAs are disrupted in intellectual disabilities and neurodegerative syndromes and contribute to atherosclerosis, and snoRNA and lncRNA functions are impaired in imprinting syndromes.

  • These alterations of ncRNA expression and/or function in disease suggest that therapies targeting these molecules might be useful. Most of these approaches usually involve antisense oligonucleotides directed against miRNAs, but small molecule drugs that act on the miRNA machinery are also an interesting alternative pathway to explore, and similar strategies can also target other ncRNAs.

  • A key challenge comes from the little basic knowledge that exists about the normal function of some ncRNAs, particularly lncRNAs. The alliance between 'wet' laboratory scientists (that is, molecular and cellular biomedical researchers) and 'dry' laboratory scientists (that is, bioinformaticians) promises to be decisive in solving this exciting puzzle.

Abstract

The relevance of the non-coding genome to human disease has mainly been studied in the context of the widespread disruption of microRNA (miRNA) expression and function that is seen in human cancer. However, we are only beginning to understand the nature and extent of the involvement of non-coding RNAs (ncRNAs) in disease. Other ncRNAs, such as PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), transcribed ultraconserved regions (T-UCRs) and large intergenic non-coding RNAs (lincRNAs) are emerging as key elements of cellular homeostasis. Along with microRNAs, dysregulation of these ncRNAs is being found to have relevance not only to tumorigenesis, but also to neurological, cardiovascular, developmental and other diseases. There is great interest in therapeutic strategies to counteract these perturbations of ncRNAs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The biogenesis and effector machineries of miRNAs, piRNAs and snoRNAs.
Figure 2: Examples of roles of ncRNAs in disease pathophysiology.
Figure 3: Therapies targeting miRNAs in human disease.

Similar content being viewed by others

References

  1. Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M. & Gerstein, M. B. Annotating non-coding regions of the genome. Nature Rev. Genet. 11, 559–571 (2010).

    CAS  PubMed  Google Scholar 

  2. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs insight into functions. Nature Rev. Genet. 10, 155–159 (2009).

    CAS  PubMed  Google Scholar 

  3. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    CAS  PubMed  Google Scholar 

  4. Mendell, J. T. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4, 1179–1184 (2005).

    CAS  PubMed  Google Scholar 

  5. Esquela-Kerscher, A. & Slack, F. J. OncomiRs — microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    CAS  Google Scholar 

  6. Hammond, S. M. MicroRNAs as tumor suppressors. Nature Genet. 39, 582–583 (2007).

    CAS  PubMed  Google Scholar 

  7. Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nature Rev. Genet. 10, 704–714 (2009).

    CAS  PubMed  Google Scholar 

  8. Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S. & Calin. G. A. MicroRNAs — the micro steering wheel of tumour metastases. Nature Rev. Cancer 9, 293–302 (2009).

    CAS  Google Scholar 

  9. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005). This is a landmark article that provides a comprehensive view of the transcriptome.

    CAS  PubMed  Google Scholar 

  10. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    CAS  PubMed  Google Scholar 

  11. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature Rev. Genet. 11, 597–610 (2010).

    CAS  PubMed  Google Scholar 

  12. Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nature Rev. Genet. 12, 19–31 (2011).

    CAS  PubMed  Google Scholar 

  13. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007).

    CAS  PubMed  Google Scholar 

  14. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    CAS  PubMed  Google Scholar 

  15. Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315, 1587–1590 (2007).

    CAS  PubMed  Google Scholar 

  16. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    CAS  PubMed  Google Scholar 

  17. Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).

    CAS  PubMed  Google Scholar 

  18. Kuramochi-Miyagawa, S. et al. MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 24, 887–892 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Watanabe, T. et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848–852 (2011). This paper discusses the exciting discovery of a new function of piRNAs: the regulation of imprinting-related DNA methylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kiss-László, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M. & Kiss, T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 1077–1088 (1996).

    PubMed  Google Scholar 

  21. Ni, J., Tien, A. L. & Fournier, M. J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565–573 (1997).

    CAS  PubMed  Google Scholar 

  22. King, T. H., Liu, B., McCully, R. R. & Fournier, M. J. Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol. Cell 11, 425–435 (2003).

    CAS  PubMed  Google Scholar 

  23. Navarro, P., Page, D. R., Avner, P. & Rougeulle, C. Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev. 20, 2787–2792 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010). This provides a clear demonstration that many epigenetic layers are interconnected.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Plath. K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    CAS  PubMed  Google Scholar 

  27. Guttman, M., Amit, I., Garber, M., French, C. & Lin, M. F. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Orom, U. A., Derrien, T., Guigo, R. & Shiekhattar, R. Long noncoding RNAs as enhancers of gene expression. Cold Spring Harb. Symp. Quant. Biol. 75, 325–331 (2010).

    CAS  PubMed  Google Scholar 

  31. Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    CAS  PubMed  Google Scholar 

  32. Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).

    CAS  PubMed  Google Scholar 

  33. Calin, G. A. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12, 215–229 (2007). This paper presents the novel finding of the involvement of a new class of ncRNAs, T-UCRs, in human cancer.

    CAS  PubMed  Google Scholar 

  34. Lujambio, A. et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29, 6390–6401 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854 (2008).

    CAS  PubMed  Google Scholar 

  37. Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet. 41, 572–578 (2009).

    CAS  PubMed  Google Scholar 

  38. Feuerhahn, S., Iglesias, N., Panza, A., Porro, A. & Lingner, J. TERRA biogenesis, turnover and implications for function. FEBS Lett. 584, 3812–3818 (2010).

    CAS  PubMed  Google Scholar 

  39. Davalos, V. et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 29 Aug 2011 (10.1038/onc.2011.383).

  40. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002). This was a key study that showed the presence of genomic defects of miRNAs in transformed cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136–9141 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Melo, S. A. et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genetics 41, 365–370 (2009). This was the first reported mutation of an miRNA-processing gene in human tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hill, D. A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Melo, S. A. et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18, 303–315 (2010).

    CAS  PubMed  Google Scholar 

  46. Lu, Y. et al. Identification of piRNAs in HeLa cells by massive parallel sequencing. BMB Rep. 43, 635–641 (2010).

    CAS  PubMed  Google Scholar 

  47. Park, C. W., Zeng, Y., Zhang, X., Subramanian, S. & Steer, C. J. Mature microRNAs identified in highly purified nuclei from HCT116 colon cancer cells. RNA Biol. 7, 606–614 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cichocki, F. et al. Cutting edge: KIR antisense transcripts are processed into a 28-base PIWI-like RNA in human NK cells. J. Immunol. 185, 2009–2012 (2010).

    CAS  PubMed  Google Scholar 

  49. Yan, Z. et al. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res. 39, 6596–6607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Taubert, H. et al. Expression of the stem cell self-renewal gene Hiwi and risk of tumour-related death in patients with soft-tissue sarcoma. Oncogene 26, 1098–1100 (2007).

    CAS  PubMed  Google Scholar 

  51. Sun, G. et al. Clinical significance of Hiwi gene expression in gliomas. Brain Res. 1373, 183–188 (2011).

    CAS  PubMed  Google Scholar 

  52. Lee, J. H. et al. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum. Mol. Genet. 15, 201–211 (2006).

    CAS  PubMed  Google Scholar 

  53. Liu, J. J. et al. Piwil2 is expressed in various stages of breast cancers and has the potential to be used as a novel biomarker. Int. J. Clin. Exp. Pathol. 3, 328–337 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Liu, X. et al. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int. J. Cancer 118, 1922–1929 (2006).

    CAS  PubMed  Google Scholar 

  55. Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G. & Levine, S. S. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Janic, A., Mendizabal, L., Llamazares, S., Rossell, D. & Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330, 1824–1827 (2010).

    CAS  PubMed  Google Scholar 

  57. Sharma, A. K. et al. Human CD34+ stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood 97, 426–434 (2001).

    CAS  PubMed  Google Scholar 

  58. Chen, L. et al. Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS ONE 2, e293 (2007).

    PubMed  PubMed Central  Google Scholar 

  59. Wang, Q., Han, C., Milum, K. & Wani, A. A. Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment. Mutat. Res. 708, 59–68 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng, J. et al. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin. Chim. Acta 412, 1621–1625 (2011).

    CAS  PubMed  Google Scholar 

  61. Chang, L. S., Lin, S. Y., Lieu, A. S. & Wu, T. L. Differential expression of human 5S snoRNA genes. Biochem. Biophys. Res. Commun. 299, 196–200 (2002).

    CAS  PubMed  Google Scholar 

  62. Liao, J., Yu, L., Mei, Y., Guarnera, M. & Shen, J. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol. Cancer 9, 198 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Dong, X. Y., Guo, P., Boyd, J., Sun, X. & Li, Q. Implication of snoRNA U50 in human breast cancer. J. Genet. Genomics 36, 447–454 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dong, X. Y. et al. snoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum. Mol. Genet. 17, 1031–1042 (2008).

    CAS  PubMed  Google Scholar 

  65. Mourtada-Maarabouni, M., Hedge, V. L., Kirkham, L., Farzaneh, F. & Williams, G. T. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J. Cell Sci. 121, 939–946 (2008).

    CAS  PubMed  Google Scholar 

  66. Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F. & Williams, G. T. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195–208 (2009).

    CAS  PubMed  Google Scholar 

  67. Bachellerie, J. P., Cavaillé, J. & Hüttenhofer, A. The expanding snoRNA world. Biochimie 84, 775–790 (2002).

    CAS  PubMed  Google Scholar 

  68. Gupta, V. & Kumar, A. Dyskeratosis congenita. Adv. Exp. Med. Biol. 685, 215–219 (2010).

    CAS  PubMed  Google Scholar 

  69. Scott, M. S. & Ono, M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie 93, 1987–1992 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rossi, S., Sevignani, C., Nnadi, S. C., Siracusa, L. D. & Calin, G. A. Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm. Genome 19, 526–540 (2008).

    CAS  PubMed  Google Scholar 

  71. Scaruffi, P. et al. Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma. BMC Cancer 9, 441 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. Wojcik, S. E. et al. Non-coding RNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis 31, 208–215 (2010).

    CAS  PubMed  Google Scholar 

  73. Braconi, C. et al. Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 108, 786–791 (2011).

    CAS  PubMed  Google Scholar 

  74. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2010). This paper describes a beautiful example of a mechanism of gene regulation that is mediated by ncRNAs.

    Google Scholar 

  75. Cao, X., Yeo, G., Muotri, A. R., Kuwabara, T. & Gage, F. H. Noncoding RNAs in the mammalian central nervous system. Annu. Rev. Neurosci. 29, 77–103 (2006).

    CAS  PubMed  Google Scholar 

  76. Kim, J. et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schaefer, A. et al. Cerebellar neurodegeneration in the absence of microRNAs. J. Exp. Med. 204, 1553–1558 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shin, D., Shin, J. Y., McManus, M. T., Ptácek, L. J. & Fu, Y. H. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann. Neurol. 66, 843–857 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hébert, S. S. et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum. Mol. Genet. 19, 3959–3969 (2010).

    PubMed  Google Scholar 

  80. Ling, S. C, Albuquerque, C. P., Han, J. S., Lagier-Tourenne, C. & Tokunaga, S. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc. Natl Acad. Sci. USA 107, 13318–13323 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F. & Seeburg, D. P. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373–384 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gehrke, S. et al. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637–641 (2010). This paper discusses the unmasking of a link between a classical Alzheimer's gene and the miRNA world.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuhn, D. E., Nuovo, G. J., Terry, A. V. Jr, Martin, M. M. & Malana, G. E. Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains. J. Biol. Chem. 285, 1529–1543 (2010).

    CAS  PubMed  Google Scholar 

  84. Glinsky, G. V. An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle 7, 2570–2583 (2008).

    CAS  PubMed  Google Scholar 

  85. Wang, G., van der Walt, J. M., Mayhew, G., Li, Y. J. & Züchner, S. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am. J. Hum. Genet. 82, 283–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Williams, A. H. et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549–1554 (2009). This paper opened up innovative therapeutic strategies for a devastating disorder.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Haramati, S. et al. miRNA malfunction causes spinal motor neuron disease. Proc. Natl Acad. Sci. USA 107, 13111–13116 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, Y. et al. miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nature Neurosci. 11, 1137–1139 (2008).

    CAS  PubMed  Google Scholar 

  89. Hébert, S. S., Horré, K., Nicolaï, L., Papadopoulou, A. S. & Mandemakers, W. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proc. Natl Acad. Sci. USA 105, 6415–6420 (2008).

    PubMed  PubMed Central  Google Scholar 

  90. Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N. & Tang, G. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of b-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci. 28, 1213–1223 (2008).

    PubMed  PubMed Central  Google Scholar 

  91. Boissonneault, V., Plante, I., Rivest, S. & Provost, P. MicroRNA-298 and microRNA-328 regulate expression of mouse β-amyloid precursor protein-converting enzyme 1. J. Biol. Chem. 284, 1971–1981 (2009).

    CAS  PubMed  Google Scholar 

  92. De Santis, G., Ferracin, M., Biondani, A., Caniatti, L. & Rosaria Tola, M. Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J. Neuroimmunol. 226, 165–171 (2010).

    CAS  PubMed  Google Scholar 

  93. Cox, M. B., Cairns, M. J., Gandhi, K. S., Carroll, A. P. & Moscovis, S. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS ONE 5, e12132 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Junn, E., Lee, K. W., Jeong, B. S., Chan, T. W. & Im, J. Y. Repression of a-synuclein expression and toxicity by microRNA-7. Proc. Natl Acad. Sci. USA 106, 13052–13057 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, W. L., Lin, J. W. & Huang, H. J. SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res. 1233, 176–184 (2008).

    CAS  PubMed  Google Scholar 

  96. Albinsson, S. et al. MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler. Thromb. Vasc. Biol. 6, 1118–1126 (2010).

    Google Scholar 

  97. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    CAS  PubMed  Google Scholar 

  98. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Med. 13, 486–491 (2007).

    CAS  PubMed  Google Scholar 

  99. Van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fang, Y., Shi, C., Manduchi, E., Civelek, M. & Davies, P. F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl Acad. Sci. USA 107, 13450–13455 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nicoli, S. et al. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464, 1196–1200 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ji, R. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res. 100, 1579–1588 (2007).

    CAS  PubMed  Google Scholar 

  104. Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet. 38, 813–818 (2006).

    CAS  PubMed  Google Scholar 

  105. Sethupathy, P. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet. 81, 405–413 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Starczynowski, D. T. et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nature Med. 16, 49–58 (2010).

    CAS  PubMed  Google Scholar 

  107. Gatto, S., Della Ragione, F., Cimmino, A., Strazzullo, M. & Fabbri, M. Epigenetic alteration of microRNAs in DNMT3B-mutated patients of ICF syndrome. Epigenetics 5, 427–443 (2010).

    CAS  PubMed  Google Scholar 

  108. Urdinguio, R. G. et al. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics 5, 656–663 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu, H. et al. Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA 107, 18161–18166 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Brest, P. et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nature Genet. 43, 242–245 (2011).

    CAS  PubMed  Google Scholar 

  111. Lewis, M. A. et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature Genet. 41, 614–618 (2009).

    CAS  PubMed  Google Scholar 

  112. Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nature Med. 14, 723–730 (2008).

    CAS  PubMed  Google Scholar 

  113. Martínez, F. et al. Enrichment of ultraconserved elements among genomic imbalances causing mental delay and congenital anomalies. BMC Med. Genomics 3, 54 (2010).

    PubMed  PubMed Central  Google Scholar 

  114. Horsthemke, B. & Wagstaff, J. Mechanisms of imprinting of the Prader-Willi/Angelman region. Am. J. Med. Genet. A. 146 A, 2041–2052 (2008).

    Google Scholar 

  115. Kishore, S. & Stamm, S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311, 230–232 (2006).

    CAS  PubMed  Google Scholar 

  116. Sahoo, T. et al. Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nature Genet. 40, 719–721 (2008).

    CAS  PubMed  Google Scholar 

  117. Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839–849 (2004).

    CAS  PubMed  Google Scholar 

  118. Gu, A. et al. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum. Reprod. 25, 2955–2961 (2010).

    CAS  PubMed  Google Scholar 

  119. Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).

    PubMed  PubMed Central  Google Scholar 

  120. Stenvang, J., Lindow, M. & Kauppinen, S. Targeting of microRNAs for therapeutics. Biochem. Soc. Trans. 36, 1197–1200 (2008).

    CAS  PubMed  Google Scholar 

  121. Krutzfeldt, J., Rajewsky, N. & Braich R. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    PubMed  Google Scholar 

  122. Elmen, J., Lindow, M. & Schutz, S. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    CAS  PubMed  Google Scholar 

  123. Esau, C. C. Inhibition of microRNA with antisense oligonucleotides. Methods 44, 55–60 (2008).

    CAS  PubMed  Google Scholar 

  124. Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotech. 28, 341–347 (2010). This is a comprehensive study that highlights the relevance of miRNAs in the dissemination of cancer cells.

    CAS  Google Scholar 

  125. Lu, Y., Xiao, J. & Lin, H. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 37, e24 (2009).

    PubMed  PubMed Central  Google Scholar 

  126. Cohen, S. M. Use of microRNA sponges to explore tissue-specific microRNA functions in vivo. Nature Methods 6, 873–874 (2009).

    CAS  PubMed  Google Scholar 

  127. Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol. 12, 247–256 (2010).

    CAS  PubMed  Google Scholar 

  128. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009). This study provides an in vivo demonstration of the antitumour effect of the administration of a tumour suppressor miRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nature Rev. Genet. 12, 316–328 (2011).

    CAS  PubMed  Google Scholar 

  130. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 39, 673–677 (2007). This is an elegant functional demonstration that haploinsufficiency for miRNA-processing genes promotes carcinogenesis.

    CAS  PubMed  Google Scholar 

  131. Shan, G. et al. A small molecule enhances RNA interference and promotes microRNA processing. Nature Biotech. 26, 933–940 (2008).

    CAS  Google Scholar 

  132. Melo, S. et al. The small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl Acad. Sci. USA 108, 4394–4399 (2011). A 'first-in-class' compound that acts on miRNA biogenesis to have an antitumour effect is described in this study.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Saito, Y. et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006).

    CAS  PubMed  Google Scholar 

  134. Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67, 1424–1429 (2007). This paper discusses the first identified tumour suppressor miRNA that is inactivated by CpG island hypermethylation in human cancer.

    CAS  PubMed  Google Scholar 

  135. Rodríguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nature Med. 17, 330–339 (2011).

    PubMed  Google Scholar 

  136. Tsai, M. C. et al. Long noncoding RNA as a modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tsai, M. C., Spitale, R. C. & Chang, H. Y. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 71, 3–7 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lunse, C. E., Michlewski, G. & Hopp, C. S. An aptamer targeting the apical-loop domain modulates pri-miRNA processing. Angew. Chem. Int. Ed. Engl. 49, 4674–4677 (2010).

    PubMed  Google Scholar 

  139. Costa, F. F. Non-coding RNAs and new opportunities for the private sector. Drug Discov. Today 14, 446–452 (2009).

    CAS  PubMed  Google Scholar 

  140. The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  141. Ponjavic, J., Ponting, C. P. & Lunter, G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 17, 556–565 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Medina, P. P., Nolde, M. & Slack, F. J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467, 86–90 (2010). This is a paper that presents proof-of-concept that tumours depend on miRNAs, extending the concept of oncogene addiction to ncRNAs.

    CAS  PubMed  Google Scholar 

  143. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    CAS  PubMed  Google Scholar 

  144. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    CAS  PubMed  Google Scholar 

  145. Eggermann, T. Silver-Russell and Beckwith–Wiedemann syndromes: opposite (epi)mutations in 11p15 result in opposite clinical pictures. Horm. Res. 71, (Suppl. 2), 30–35 (2009).

    CAS  PubMed  Google Scholar 

  146. Williamson, C. M. et al. Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster. PLoS Genet. 7, e1001347 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Pauley, K. M. & Cha, S. miRNA-146a in rheumatoid arthritis: a new therapeutic strategy. Immunotherapy 3, 829–831 (2011).

    CAS  PubMed  Google Scholar 

  148. Temple, I. K. & Shield, J. P. Transient neonatal diabetes, a disorder of imprinting. J. Med. Genet. 39, 872–875 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks members of his laboratory for helpful discussions. He acknowledges support from the European Research Council Advanced Grant EPINORC, Fondo de Investigaciones Sanitarias Grant PI08-1345, Dr. Josef Steiner Cancer Research Foundation Award and the Health Department of the Catalan Government (Generalitat de Catalunya). The author is an Institucio Catalana de Recerca i Estudis Avançats (ICREA) Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Esteller.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Manel Esteller's homepage

Bellvitge Biomedical Research Institute (IDIBELL)

Cancer Epigenetics and Biology Program (PEBC)

CMFinder

EvoFold

FOLDALIGN

Pfold

QRNA

RNAalifold

RNAfold

RNAz

Glossary

Imprinting

The epigenetic marking of a gene on the basis of parental origin, which in somatic tissues results in monoallelic expression.

Argonaute protein

A type of protein that binds to small RNAs and is the defining component of the RNA-induced silencing complex (RISC). Proteins of this type have an ssRNA-binding domain (PAZ) and a ribonuclease domain (PIWI). The small RNAs guide Argonaute proteins to target mRNAs in order to mediate post-transcriptional degradation and/or translational silencing.

Polycomb complex

Originally described in Drosophila melanogaster, polycomb complexes maintain the stable and heritable repression of several genes, including the homeotic genes.

Orthologues

Pairs of single genes in two different species that are descended from the same ancestral gene.

Fragile regions

Chromosomal loci that appear as regions of decondensed or partially broken mitotic chromosomes under specific karyotyping conditions.

Cisplatin

A chemotherapy drug that is used to treat various types of cancers. It was the first member of a class of platinum-containing anti-cancer drugs, which now also includes carboplatin and oxaliplatin. These platinum complexes react in vivo, binding to and causing crosslinking of DNA, which ultimately triggers apoptosis (programmed cell death).

Loss of heterozygosity

A loss of one of the alleles at a given locus as a result of a genomic change, such as mitotic deletion, gene conversion or chromosome mis-segregration.

CpG island

A genomic region enriched for CpG dinucleotides that often occurs near constitutively active promoters. Mammalian genomes are otherwise depleted of CpGs owing to the preferential deamination of methylated cytosines.

Sub-G1 peak

On cell staining with a DNA-intercalating dye such as propidium iodide, a DNA profile representing cells in G1, S phase and G2M will be observed with apoptotic cells being represented by a sub-G0/G1 population seen to the left of the G0/G1 peak.

Dendritic spine

A mushroom-shaped structure on neuronal dendrites that receives synaptic input and has postsynaptic densities. Changes in spine shape are thought to be important for modulating synaptic strength.

Ataxia

Inability to coordinate movement.

Penetrance

The proportion of individuals with a specific genotype who manifest the genotype at the phenotypic level. If penetrance of a disease allele is 100% then all individuals carrying that allele will express the associated disorder and the genotype is said to be 'completely penetrant'.

5q syndrome

A rare disorder caused by loss of part of the long arm (q arm, band 5q31.1) of human chromosome 5.

Systematic evolution of ligands by exponential enrichment

(SELEX). A set of laboratory procedures that are generally used for the identification of representative sets of ligands for a protein. In the context of RNA, this is a method for identifying consensus-binding sequences on RNA substrates by in vitro selection of short RNAs that bind preferentially to RNA-binding proteins.

Second-generation sequencing

Used in this Review to refer to sequencing methods that have emerged since 2005 that produce millions of typically short sequence reads (50–400 bases) from amplified DNA clones. It is also often known as next-generation sequencing.

RNA sequencing

An experimental protocol that uses next-generation sequencing technologies to sequence the RNA molecules within a biological sample in an effort to determine the primary sequence and relative abundance of each RNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteller, M. Non-coding RNAs in human disease. Nat Rev Genet 12, 861–874 (2011). https://doi.org/10.1038/nrg3074

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3074

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer