Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards genome-scale signalling-network reconstructions

Key Points

  • Signalling networks convert observations about the environment into chemical and physical representations that ultimately modulate cellular behaviour.

  • Signalling networks are comprised of sensors, transducers and actuators.

  • The more transducers there are between a sensor and its cognate actuator, the greater the opportunity for a signal to be influenced by other signals.

  • Qualitative modelling approaches provide insights into how a signal is propagated through or integrated into a network.

  • Signalling-network reconstructions represent our knowledge regarding the network in a format that is amenable to conversion into mathematical models.

  • Signalling networks are comprised of components that are expressed in temporal fashion and may be distributed heterogeneously.

  • Signalling networks evolve to aid the organism in which they are located to overcome its specific challenge. Therefore, despite a high degree of similarity of parts, related organisms may have substantially different signalling networks.

  • The symbolic nature of signals makes it easier for signalling networks to be rewired by evolution than is the case for metabolic networks.

Abstract

Biological signalling networks allow living organisms to issue an integrated response to current conditions and make limited predictions about future environmental changes. Small-scale dynamic models of signalling cascades, including mitogen-activated protein kinase cascades, have been developed to generate hypotheses about signal transduction. Owing to technical limitations, these models and the hypotheses they generate have focused on a limited subset of signalling molecules. Now that we can simultaneously measure a substantial portion of the molecular components of a cell, we can begin to develop and test systems-level models of cellular signalling and regulatory processes, therefore gaining insights into the 'thought' processes of a cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways, circuits, components and modularity in signalling networks.

Similar content being viewed by others

References

  1. Hyduke, D. R., Amundson, S. A. & Fornace, A. J. Jr. in Handbook of Cell Signaling 2nd edn Vol. 3 (eds Bradshaw, R. A. & Dennis, E. A.) 2107–2125 (Academic Press, 2009).

    Google Scholar 

  2. Tovar, C. et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc. Natl Acad. Sci. USA 103, 1888–1893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bulavin, D. V. et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16Ink4a-p19Arf pathway. Nature Genet. 36, 343–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Lavelle, C., Salles, B. & Wiesmuller, L. DNA repair, damage signaling and carcinogenesis. DNA Repair (Amst.) 7, 670–680 (2008).

    Article  CAS  Google Scholar 

  5. Abbott, D. W., Wilkins, A., Asara, J. M. & Cantley, L. C. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14, 2217–2227 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Franke, R. et al. Host–pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst. Biol. 2, 4 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, B., Xiao, Z. & Ren, E. C. Redefining the p53 response element. Proc. Natl Acad. Sci. USA 106, 14373–14378 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, S. S. & Fraenkel, E. Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci. Signal. 2, ra40 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Figueroa-Bossi, N., Valentini, M., Malleret, L. & Bossi, L. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev. 23, 2004–2015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Li, F., Thiele, I., Jamshidi, N. & Palsson, B. Ø. Identification of potential pathway mediation targets in Toll-like receptor signaling. PLoS Comput. Biol. 5, e1000292 (2009). This paper presents one of the largest signalling-network reconstructions to date. The authors used the stoichiometric approach to identify novel signalling pathways in T cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1,260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Herrgard, M. J. et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotech. 26, 1155–1160 (2008).

    Article  CAS  Google Scholar 

  17. Raghunathan, A., Reed, J., Shin, S., Palsson, B. & Daefler, S. Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host–pathogen interaction. BMC Syst. Biol. 3, 38 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Vo, T. D., Greenberg, H. J. & Palsson, B. Ø. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279, 39532–39540 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biol. 6, 97–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Carter, G. W. et al. Prediction of phenotype and gene expression for combinations of mutations. Mol. Syst. Biol. 3, 96 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, I. et al. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nature Genet. 40, 181–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Bhalla, U. S. Understanding complex signaling networks through models and metaphors. Prog. Biophys. Mol. Biol. 81, 45–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Singh, A. H., Wolf, D. M., Wang, P. & Arkin, A. P. Modularity of stress response evolution. Proc. Natl Acad. Sci. USA 105, 7500–7505 (2008). This study introduces engineering ontology for the classification of signalling pathway elements and explores the evolution of modularity in bacterial and archaeal stress responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sivakumaran, S., Hariharaputran, S., Mishra, J. & Bhalla, U. S. The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics 19, 408–415 (2003). This paper describes the establishment of the Database of Quantitative Cellular Signaling. This is a repository of functional kinetic models of signalling pathways that serves as a useful introduction to the kinetic modelling of signalling.

    Article  CAS  PubMed  Google Scholar 

  26. Kohn, K. W. & Aladjem, M. I. Circuit diagrams for biological networks. Mol. Syst. Biol. 2, 2006.0002 (2006).

  27. Friedman, A. & Perrimon, N. Genetic screening for signal transduction in the era of network biology. Cell 128, 225–231 (2007). A thought-provoking essay that illustrates the demand for new conceptual frameworks to deal with signalling networks.

    Article  CAS  PubMed  Google Scholar 

  28. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004). A Review that explains a variety of abstract features of intracellular organization, including modularity.

    Article  CAS  PubMed  Google Scholar 

  29. Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N. & Altan-Bonnet, G. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321, 1081–1084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gama-Castro, S. et al. RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res. 36, D120–D124 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Oda, K. & Kitano, H. A comprehensive map of the Toll-like receptor signaling network. Mol. Syst. Biol. 2, 2006.0015 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L. & Palsson, B. Ø. Reconstruction of biochemical networks in microorganisms. Nature Rev. Microbiol. 7, 129–143 (2009).

    Article  CAS  Google Scholar 

  33. Papin, J. A., Hunter, T., Palsson, B. Ø. & Subramaniam, S. Reconstruction of cellular signalling networks and analysis of their properties. Nature Rev. Mol. Cell Biol. 6, 99–111 (2005).

    Article  CAS  Google Scholar 

  34. Famili, I., Forster, J., Nielsen, J. & Palsson, B. Ø. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl Acad. Sci. USA 100, 13134–13139 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feist, A. M. & Palsson, B. Ø. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotech. 26, 659–667 (2008).

    Article  CAS  Google Scholar 

  36. Suthers, P. F., Zomorrodi, A. & Maranas, C. D. Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol. Syst. Biol. 5, 301 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Feist, A. M. et al. Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab. Eng.17 Oct 2009 (doi:10.1016/j.ymben.2009.10.003).

    Article  CAS  PubMed  Google Scholar 

  38. Vitkup, D., Kharchenko, P. & Wagner, A. Influence of metabolic network structure and function on enzyme evolution. Genome Biol. 7, R39 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gianchandani, E. P., Papin, J. A., Price, N. D., Joyce, A. R. & Palsson, B. Ø. Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput. Biol. 2, e101 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Klamt, S., Saez-Rodriguez, J., Lindquist, J. A., Simeoni, L. & Gilles, E. D. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7, 56 (2006). This paper introduces the Boolean formalism for analysing large-scale signalling-network models.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cho, B. K. et al. The transcription unit architecture of the Escherichia coli genome. Nature Biotech. 27, 1043–1049 (2009).

    Article  CAS  Google Scholar 

  42. Hyduke, D. R., Jarboe, L. R., Tran, L. M., Chou, K. J. & Liao, J. C. Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 8484–8489 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jarboe, L. R., Hyduke, D. R., Tran, L. M., Chou, K. J. & Liao, J. C. Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis. J. Biol. Chem. 283, 5148–5157 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Balazsi, G., Barabasi, A. L. & Oltvai, Z. N. Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc. Natl Acad. Sci. USA 102, 7841–7846 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Christensen, T. S., Oliveira, A. P. & Nielsen, J. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Syst. Biol. 3, 7 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Papin, J. A. & Palsson, B. Ø. The JAK–STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys. J. 87, 37–46 (2004). An application of the stoichiometric approach that suggests that a substantial portion of the signalling pathways in the JAK–STAT pathway is not influenced by crosstalk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saez-Rodriguez, J. et al. A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3, e163 (2007). An application of the Boolean approach for analysing a real signalling pathway that includes experimental validation of a model prediction. It also shows how the Boolean approach can be used to identify gaps.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sambrano, G. R. et al. Unravelling the signal-transduction network in B lymphocytes. Nature 420, 708–710 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Harmar, A. J. et al. IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res. 37, D680–D685 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotech. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  53. Zhou, W., Ryan, J. J. & Zhou, H. Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279, 32262–32268 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Jefferson, E. R., Walsh, T. P., Roberts, T. J. & Barton, G. J. SNAPPI-DB: a database and API of Structures, iNterfaces and Alignments for Protein–Protein Interactions. Nucleic Acids Res. 35, D580–D589 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raghavachari, B., Tasneem, A., Przytycka, T. M. & Jothi, R. DOMINE: a database of protein domain interactions. Nucleic Acids Res. 36, D656–D661 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Breitkreutz, B. J. et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res. 36, D637–D640 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Papin, J. A. & Palsson, B. Ø. Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J. Theor. Biol. 227, 283–297 (2004).

    Article  PubMed  Google Scholar 

  58. Ernst, A. et al. Rapid evolution of functional complexity in a domain family. Sci. Signal. 2, ra50 (2009).

    Article  PubMed  CAS  Google Scholar 

  59. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Ubersax, J. A. & Ferrell, J. E. J. Mechanisms of specificity in protein phosphorylation. Nature Rev. Mol. Cell Biol. 8, 530–541 (2007).

    Article  CAS  Google Scholar 

  62. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Thiele, I., Jamshidi, N., Fleming, R. M. & Palsson, B. Ø. Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput. Biol. 5, e1000312 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Davidson, E. H. & Levine, M. S. Properties of developmental gene regulatory networks. Proc. Natl Acad. Sci. USA 105, 20063–20066 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhattacharyya, R. P., Remenyi, A., Yeh, B. J. & Lim, W. A. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75, 655–680 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Hsueh, R. C. et al. Deciphering signaling outcomes from a system of complex networks. Sci. Signal. 2, ra22 (2009). An experimental study of the response of macrophages to cytokines that shows how network properties can be deduced by treating the cell as a 'black box'.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Borisov, N. et al. Systems-level interactions between insulin–EGF networks amplify mitogenic signaling. Mol. Syst. Biol. 5, 256 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Sopko, R. & Andrews, B. J. Linking the kinome and phosphorylome — a comprehensive review of approaches to find kinase targets. Mol. Biosyst. 4, 920–933 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Skerker, J. M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Edwards, J. S. & Palsson, B. Ø. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl Acad. Sci. USA 97, 5528–5533 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Henry, C. S., Zinner, J. F., Cohoon, M. P. & Stevens, R. L. iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol. 10, R69 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kim, T. Y. et al. Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol. Bioeng. 97, 657–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, D. S. et al. Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. J. Bacteriol. 191, 4015–4024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shinfuku, Y. et al. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb. Cell Fact. 8, 43 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Suthers, P. F. et al. A genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189. PLoS Comput. Biol. 5, e1000285 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Thomas, G. H. et al. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Syst. Biol. 3, 24 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Chavali, A. K., Whittemore, J. D., Eddy, J. A., Williams, K. T. & Papin, J. A. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol. Syst. Biol. 4, 177 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sheikh, K., Forster, J. & Nielsen, L. K. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol. Prog. 21, 112–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Notebaart, R. A., van Enckevort, F. H., Francke, C., Siezen, R. J. & Teusink, B. Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7, 296 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Oliveira, A. P., Patil, K. R. & Nielsen, J. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst. Biol. 2, 17 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zevedei-Oancea, I. & Schuster, S. A theoretical framework for detecting signal transfer routes in signalling networks. Comput. Chem. Eng. 29, 597–617 (2005).

    Article  CAS  Google Scholar 

  83. Min Lee, J., Gianchandani, E. P., Eddy, J. A. & Papin, J. A. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4, e1000086 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kruger, M. et al. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc. Natl Acad. Sci. USA 105, 2451–2456 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Luo, F. et al. Modular organization of protein interaction networks. Bioinformatics 23, 207–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Croes, D., Couche, F., Wodak, S. J. & van Helden, J. Metabolic PathFinding: inferring relevant pathways in biochemical networks. Nucleic Acids Res. 33, W326–W330 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, C. Y. et al. Hubba: hub objects analyzer — a framework of interactome hubs identification for network biology. Nucleic Acids Res. 36, W438–W443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chang, R. L., Luo, F., Johnson, S. A. & Scheuermann, R. H. Deterministic graph-theoretic algorithm for detecting modules in biological interaction networks. Int. J. Bioinform. Res. Appl. (in the press).

  89. Dasika, M. S., Burgard, A. & Maranas, C. D. A computational framework for the topological analysis and targeted disruption of signal transduction networks. Biophys. J. 91, 382–398 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Brady, A., Maxwell, K., Daniels, N. & Cowen, L. J. Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways. PLoS ONE 4, e5364 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jamshidi, N. & Palsson, B. Ø. Systems biology of SNPs. Mol. Syst. Biol. 2, 38 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Krantz, M. et al. Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway. Mol. Syst. Biol. 5, 281 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mani, R., St Onge, R. P., Hartman, J. L., Giaever, G. & Roth, F. P. Defining genetic interaction. Proc. Natl Acad. Sci. USA 105, 3461–3466 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sahin, O. et al. Combinatorial RNAi for quantitative protein network analysis. Proc. Natl Acad. Sci. USA 104, 6579–6584 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Green, M. L. & Karp, P. D. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5, 76 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Osterman, A. L. & Begley, T. P. A subsystems-based approach to the identification of drug targets in bacterial pathogens. Prog. Drug Res. 64, 131–170 (2007).

    CAS  PubMed  Google Scholar 

  97. Kharchenko, P., Chen, L., Freund, Y., Vitkup, D. & Church, G. M. Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics 7, 177 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Reed, J. L. et al. Systems approach to refining genome annotation. Proc. Natl Acad. Sci. USA 103, 17480–17484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Szczurek, E., Gat-Viks, I., Tiuryn, J. & Vingron, M. Elucidating regulatory mechanisms downstream of a signaling pathway using informative experiments. Mol. Syst. Biol. 5, 287 (2009). This paper introduces a creative experimental and theoretical approach that aims to expand signalling networks through targeted experiment design.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Shin, C. J., Wong, S., Davis, M. J. & Ragan, M. A. Protein–protein interaction as a predictor of subcellular location. BMC Syst. Biol. 3, 28 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nature Biotech. 23, 561–566 (2005).

    Article  CAS  Google Scholar 

  102. Bandyopadhyay, S., Kelley, R., Krogan, N. J. & Ideker, T. Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput. Biol. 4, e1000065 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Lehar, J. et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3, 80 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Venancio, T. M., Balaji, S., Iyer, L. M. & Aravind, L. Reconstructing the ubiquitin network: cross-talk with other systems and identification of novel functions. Genome Biol. 10, R33 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Singh, R., Xu, J. & Berger, B. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl Acad. Sci. USA 105, 12763–12768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kelley, B. P. et al. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl Acad. Sci. USA 100, 11394–11399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bandyopadhyay, S., Sharan, R. & Ideker, T. Systematic identification of functional orthologs based on protein network comparison. Genome Res. 16, 428–435 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl Acad. Sci. USA 102, 1974–1979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tan, C. S. et al. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci. Signal. 2, ra39 (2009).

    Article  PubMed  Google Scholar 

  110. Cusick, M. E. et al. Literature-curated protein interaction datasets. Nature Methods 6, 39–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Crosson, S., McGrath, P. T., Stephens, C., McAdams, H. H. & Shapiro, L. Conserved modular design of an oxygen sensory/signaling network with species-specific output. Proc. Natl Acad. Sci. USA 102, 8018–8023 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Beltrao, P. et al. Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol. 7, e1000134 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    Article  CAS  PubMed  Google Scholar 

  115. Palsson, B. Systems Biology: Properties of Reconstructed Networks (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  116. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. Ø. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Herrgard, M. J., Lee, B. S., Portnoy, V. & Palsson, B. Ø. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16, 627–635 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Klipp, E., Nordlander, B., Kruger, R., Gennemark, P. & Hohmann, S. Integrative model of the response of yeast to osmotic shock. Nature Biotech. 23, 975–982 (2005).

    Article  CAS  Google Scholar 

  119. Moxley, J. F. et al. Special feature: linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc. Natl Acad. Sci. USA 106, 6477–6482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pryciak, P. M. Designing new cellular signaling pathways. Chem. Biol. 16, 249–254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Antunes, M. S. et al. Engineering key components in a synthetic eukaryotic signal transduction pathway. Mol. Syst. Biol. 5, 270 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Bulter, T. et al. Design of artificial cell–cell communication using gene and metabolic networks. Proc. Natl Acad. Sci. USA 101, 2299–2304 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl Acad. Sci. USA 104, 10435–10440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotech. 27, 753–759 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institute of Allergy and Infectious Diseases and the US Department of Health and Human Services through interagency agreement Y1-AI-8401-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Hyduke.

Ethics declarations

Competing interests

Bernhard Ø. Palsson serves on the scientific advisory board of Genomatica, Inc.

Related links

Related links

DATABASES

The Alliance for Cellular Signaling

BioGRID Interaction Database

Database of Quantitative Cellular Signaling

DOMINE (database of protein domain interactions)

IUPHAR database of receptors and ion channels

Kyoto Encyclopedia of Genes and Genomes Pathway Database

SNAPPI (Structures, Interfaces and Alignments for Protein–Protein Interactions)

UCSD–Nature Signaling Gateway

FURTHER INFORMATION

Daniel R. Hyduke's homepage

Bernhard Ø. Palsson's homepage

CellNetAnalyser

COBRA Toolbox

Nature Reviews Genetics article series on Modelling

Glossary

Biological network

A set of biological entities that act in an integrated fashion. Typical components of biological networks include organisms (for example, ecosystems, biofilms, and host–parasite or symbiont relationships), tissues (for example, the integrated operations of lungs, brain and heart), cells (for example, biofilms and different cells in a tissue) and the molecular components of cells (for example, proteins, DNA and RNA). Here, we focus on the molecular components of cells.

Interactome

A set of molecular components of the cell, such as proteins, and the interactions between them. The interactions can be physical (protein A binds protein B) or correlative (perturbing protein A alters protein B's activity).

Synthetic lethal

A genetic interaction in which the deletion of two genes at the same time results in lethality. An organism in which one gene is deleted and the other gene is present will still be viable.

Formalism

A description of a property of a process in mathematical terms.

Modules

A set of components that work in an integrated fashion. Personal computers are modular systems: they have keyboards, displays, motherboards and hard drives, each of which represents a module. Each module is relatively easy to replace but is composed of an integrated set of components that may be difficult to replace.

Reverse engineering

The process of discovering the technological principles of a device, object or system through analysis of its structure, function and operation. It often involves taking a system apart and analysing its workings with the aim of making a new device or program that does the same thing without using any physical part of the original.

Manual curation

In the context of this Review, this is the process by which a researcher assesses whether a given research paper possesses information that is relevant to a network under study and then examines the evidence put forth in the paper. This is opposed to artificial intelligence-guided text parsing or assuming a causal interaction based on correlative evidence in omics data sets.

Serovar

A group of related microorganisms that are classified based on a characteristic set of antigens.

Structural analysis

In the context of signalling networks, structural analysis focuses on exploring the connectivity of elements in the network and identifying routes from inputs to outputs. Structural analysis serves to construct a 'road map' of a network and then identify plausible routes from point A to point B. Connectivity refers to the number of different elements in the network with which a particular component may interact.

Genetic interaction

An interaction in which one gene product alters the phenotypic effect of a second gene product. The most common phenotype of interest for genetic interaction studies is growth. Here, the interactions are observed through gene-deletion studies in which the growth phenotype of a single deletion is compared with the growth phenotype of a double deletion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyduke, D., Palsson, B. Towards genome-scale signalling-network reconstructions. Nat Rev Genet 11, 297–307 (2010). https://doi.org/10.1038/nrg2750

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing