Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of mammalian meiosis: regulation, dynamics and impact on fertility

Key Points

  • Meiosis is a defining event of mammalian gametogenesis, and errors of meiosis lead to infertility or aneuploidy.

  • Recombination, chromosome pairing and segregation are key events of meiosis that are coupled to each other.

  • Recombination is initiated by induction of genetically programmed double-strand breaks. These breaks are concentrated at 'hot spots' that are are genetically and epigenetically determined, and influence haplotype structure.

  • Meiotic recombination occurs between chromatids on homologous chromosomes and results in crossovers (at least one per chromosome) and non-crossover exchanges. Recombination between sister chromatids is suppressed.

  • The synaptonemal complex and sister-chromatid cohesion are essential for maintaining chromosome pairing and promoting recombination.

  • Rigorous assessment of meiotic events is crucial for the successful application of assisted reproductive technologies and efforts directed to in vitro derivation of gametes.

Abstract

Meiosis is an essential stage in gamete formation in all sexually reproducing organisms. Studies of mutations in model organisms and of human haplotype patterns are leading to a clearer understanding of how meiosis has adapted from yeast to humans, the genes that control the dynamics of chromosomes during meiosis, and how meiosis is tied to gametic success. Genetic disruptions and meiotic errors have important roles in infertility and the aetiology of developmental defects, especially aneuploidy. An understanding of the regulation of meiosis, coupled with advances in genomics, may ultimately allow us to diagnose the causes of meiosis-based infertilities, more wisely apply assisted reproductive technologies, and derive functional germ cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammalian meiosis and gametogenesis.
Figure 2: Meiotic chromatin substages.
Figure 3: Overview of major meiotic recombination pathways.
Figure 4: Mouse meiotic mutant phenotypes.

Similar content being viewed by others

References

  1. Hassold, T., Hall, H. & Hunt, P. The origin of human aneuploidy: where we have been, where we are going. Hum. Mol. Genet. 16, R203–R208 (2007).

    CAS  PubMed  Google Scholar 

  2. Hunter, N. Synaptonemal complexities and commonalities. Mol. Cell 12, 533–535 (2003).

    CAS  PubMed  Google Scholar 

  3. Ward, J. O. et al. Toward the genetics of mammalian reproduction: induction and mapping of gametogenesis mutants in mice. Biol. Reprod. 69, 1615–1625 (2003).

    CAS  PubMed  Google Scholar 

  4. Handel, M. A., Lessard, C., Reinholdt, L., Schimenti, J. & Eppig, J. J. Mutagenesis as an unbiased approach to identify novel contraceptive targets. Mol. Cell. Endocrinol. 250, 201–205 (2006).

    CAS  PubMed  Google Scholar 

  5. O'Bryan, M. K. & Kretser, D. Mouse models for genes involved in impaired spermatogenesis. Int. J. Androl. 29, 76–89 (2006).

    CAS  PubMed  Google Scholar 

  6. Kimura, Y., Tateno, H., Handel, M. A. & Yanagimachi, R. Factors affecting meiotic and developmental competence of primary spermatocyte nuclei injected into mouse oocytes. Biol. Reprod. 59, 871–877 (1998).

    CAS  PubMed  Google Scholar 

  7. Kassir, Y. et al. Transcriptional regulation of meiosis in budding yeast. Int. Rev. Cytol. 224, 111–171 (2003).

    CAS  PubMed  Google Scholar 

  8. Jambhekar, A. & Amon, A. Control of meiosis by respiration. Curr. Biol. 18, 969–975 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kassir, Y., Granot, D. & Simchen, G. IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell 52, 853–862 (1988).

    CAS  PubMed  Google Scholar 

  10. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).

    CAS  PubMed  Google Scholar 

  11. Mata, J., Lyne, R., Burns, G. & Bahler, J. The transcriptional program of meiosis and sporulation in fission yeast. Nature Genet. 32, 143–147 (2002).

    CAS  PubMed  Google Scholar 

  12. Shinkai, Y. et al. A testicular germ cell-associated serine-threonine kinase, MAK, is dispensable for sperm formation. Mol. Cell Biol. 22, 3276–3280 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlecht, U. et al. Expression profiling of mammalian male meiosis and gametogenesis identifies novel candidate genes for roles in the regulation of fertility. Mol. Biol. Cell 15, 1031–1043 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shima, J. E., McLean, D. J., McCarrey, J. R. & Griswold, M. D. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol. Reprod. 71, 319–330 (2004).

    CAS  PubMed  Google Scholar 

  15. Bowles, J. et al. Retinoid signaling determines germ cell fate in mice. Science 312, 596–600 (2006).

    CAS  PubMed  Google Scholar 

  16. Koubova, J. et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc. Natl Acad. Sci. USA 103, 2474–2479 (2006). References 15 and 16 provided the first genetic and cellular evidence that indicated a role for RA in the induction of meiosis. The studies highlight the importance of gonadal somatic cells in determination of the sexually dimorphic temporal differences in the onset of meiosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowles, J. & Koopman, P. Retinoic acid, meiosis and germ cell fate in mammals. Development 134, 3401–3411 (2007).

    CAS  PubMed  Google Scholar 

  18. Anderson, E. L. et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc. Natl Acad. Sci. USA 105, 14976–14980 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin, Y., Gill, M. E., Koubova, J. & Page, D. C. Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science 322, 1685–1687 (2008).

    CAS  PubMed  Google Scholar 

  20. Fledel-Alon, A. et al. Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genet. 5, e1000658 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Cromie, G. A. & Smith, G. R. Branching out: meiotic recombination and its regulation. Trends Cell Biol. 17, 448–455 (2007).

    CAS  PubMed  Google Scholar 

  22. Murakami, H. & Keeney, S. Regulating the formation of DNA double-strand breaks in meiosis. Genes Dev. 22, 286–292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Maleki, S., Neale, M. J., Arora, C., Henderson, K. A. & Keeney, S. Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae. Chromosoma 116, 471–486 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Romanienko, P. J. & Camerini-Otero, R. D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    CAS  PubMed  Google Scholar 

  25. Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    CAS  PubMed  Google Scholar 

  26. Mahadevaiah, S. K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nature Genet. 27, 271–276 (2001).

    CAS  PubMed  Google Scholar 

  27. Libby, B. J., Reinholdt, L. G. & Schimenti, J. C. Positional cloning and characterization of Mei1, a vertebrate-specific gene required for normal meiotic chromosome synapsis in mice. Proc. Natl Acad. Sci. USA 100, 15706–15711 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukuda, T., Kugou, K., Sasanuma, H., Shibata, T. & Ohta, K. Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination. Nucleic Acids Res. 36, 984–997 (2008).

    CAS  PubMed  Google Scholar 

  29. Mets, D. G. & Meyer, B. J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139, 73–86 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, S. Y. et al. Global analysis of the meiotic crossover landscape. Dev. Cell 15, 401–415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L. M. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479–485 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Borde, V. et al. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J. 28, 99–111 (2009).

    CAS  PubMed  Google Scholar 

  33. Buard, J., Barthes, P., Grey, C. & de Massy, B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J. 27, 2616–2624 (2009). References 32 and 33 report that recombination initiation sites (hot spots) have signature chromatin modifications — H3K4me3 2014 in yeast and mice. These studies define epigenetic characteristics of loci that are targets for SPO11-mediated DSB formation, and provide a framework for understanding the underlying signals and mechanisms of recombination site selection.

    Google Scholar 

  34. Kniewel, R. & Keeney, S. Histone methylation sets the stage for meiotic DNA breaks. EMBO J. 28, 81–83 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shiroishi, T. et al. Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex. Immunogenetics 31, 79–88 (1990).

    CAS  PubMed  Google Scholar 

  36. Shiroishi, T., Sagai, T. & Moriwaki, K. Hotspots of meiotic recombination in the mouse major histocompatibility complex. Genetica 88, 187–196 (1993).

    CAS  PubMed  Google Scholar 

  37. Kelmenson, P. M. et al. A torrid zone on mouse chromosome 1 containing a cluster of recombinational hotspots. Genetics 169, 833–841 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guillon, H., Baudat, F., Grey, C., Liskay, R. M. & de Massy, B. Crossover and noncrossover pathways in mouse meiosis. Mol. Cell 20, 563–573 (2005). This paper describes molecular analysis of CO and NCO events at a recombination hot spot in mice. The authors found there were different genetic requirements and recombinant product characteristics that led them to conclude that these two pathways are distinct.

    CAS  PubMed  Google Scholar 

  39. Khil, P. P. & Camerini-Otero, R. D. Variation in patterns of human meiotic recombination. Genome Dyn. 5, 117–127 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Borts, R. H. The new yeast is a mouse! PLoS Biol. 7, e106 (2009).

    Google Scholar 

  41. Grey, C., Baudat, F. & de Massy, B. Genome-wide control of the distribution of meiotic recombination. PLoS Biol. 7, e35 (2009).

    PubMed  Google Scholar 

  42. Parvanov, E. D., Ng, S. H., Petkov, P. M. & Paigen, K. Trans-regulation of mouse meiotic recombination hotspots by Rcr1. PLoS Biol. 7, e36 (2009). References 41 and 42 used classical genetic approaches to identify a locus on chromosome 17 that controls the location of recombination hot spots genome-wide. It is the first such gene identified in mammals.

    PubMed  Google Scholar 

  43. Hayashi, K. & Matsui, Y. Meisetz, a novel histone tri-methyltransferase, regulates meiosis-specific epigenesis. Cell Cycle 5, 615–620 (2006).

    CAS  PubMed  Google Scholar 

  44. Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C. & Forejt, J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323, 373–375 (2009).

    CAS  PubMed  Google Scholar 

  45. Coop, G., Wen, X., Ober, C., Pritchard, J. K. & Przeworski, M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395–1398 (2008). The authors used high-resolution SNP analysis of human pedigrees to confirm that most COs occur at hot spots and that most of the hot spots correspond to linkage disequilibrium blocks. Furthermore, they found that hot spot usage was variable and had a genetic basis.

    CAS  PubMed  Google Scholar 

  46. Kong, A. et al. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319, 1398–1401 (2008). These authors measured meiotic recombination rates of men and women in many families and mapped a locus that controls genome-wide recombination rates. The most likely candidate gene is RNF212 , which encodes an orthologue of the yeast SC protein ZIP3 that seems to be an E3 SUMO ligase that is essential for proper crossing over.

    CAS  PubMed  Google Scholar 

  47. Chowdhury, R., Bois, P. R., Feingold, E., Sherman, S. L. & Cheung, V. G. Genetic analysis of variation in human meiotic recombination. PLoS Genet. 5, e1000648 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001).

    CAS  PubMed  Google Scholar 

  49. Plug, A. W., Xu, J., Reddy, G., Golub, E. I. & Ashley, T. Presynaptic association of Rad51 protein with selected sites in meiotic chromatin. Proc. Natl Acad. Sci. USA 93, 5920–5924 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Niu, H. et al. Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1. Mol. Biol. Cell 16, 5804–5818 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Carballo, J., Johnson, A., Sedgwick, S. & Cha, R. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132, 758–770 (2008).

    CAS  PubMed  Google Scholar 

  52. Fukuda, T., Daniel, K., Wojtasz, L., Toth, A. & Höög, C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp. Cell Res. 316, 158–171 (2010).

    CAS  PubMed  Google Scholar 

  53. Wojtasz, L. et al. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 5, e1000702 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Ghabrial, A. & Schüpbach, T. Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nature Cell Biol. 1, 354–357 (1999).

    CAS  PubMed  Google Scholar 

  55. Bhalla, N. & Dernburg, A. F. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science 310, 1683–1686 (2005).

    CAS  PubMed  Google Scholar 

  56. Roeder, G. S. Meiotic chromosomes: it takes two to tango. Genes Dev. 11, 2600–2621 (1997).

    CAS  PubMed  Google Scholar 

  57. Roeder, G. S. & Bailis, J. M. The pachytene checkpoint. Trends Genet. 16, 395–403 (2000).

    CAS  PubMed  Google Scholar 

  58. Wu, H. Y. & Burgess, S. M. Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeast. Curr. Biol. 16, 2473–2479 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, X. C. & Schimenti, J. C. Mouse pachytene checkpoint 2 (Trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet. 3, e130 (2007).

    PubMed  PubMed Central  Google Scholar 

  60. Barchi, M. et al. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol. Cell Biol. 25, 7203–7215 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kouznetsova, A. et al. BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes. J. Cell Sci. 122, 2446–2452 (2009).

    CAS  PubMed  Google Scholar 

  62. Hunt, P. A. & Hassold, T. J. Sex matters in meiosis. Science 296, 2181–2183 (2002).

    CAS  PubMed  Google Scholar 

  63. Turner, J. M., Mahadevaiah, S. K., Ellis, P. J., Mitchell, M. J. & Burgoyne, P. S. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev. Cell 10, 521–529 (2006).

    CAS  PubMed  Google Scholar 

  64. Turner, J. M. et al. Silencing of unsynapsed meiotic chromosomes in the mouse. Nature Genet. 37, 41–47 (2005).

    CAS  PubMed  Google Scholar 

  65. Schimenti, J. Synapsis or silence. Nature Genet. 37, 11–13 (2005).

    CAS  PubMed  Google Scholar 

  66. Smolka, M. B., Albuquerque, C. P., Chen, S. H. & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl Acad. Sci. USA 104, 10364–10369 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Scherthan, H. A bouquet makes ends meet. Nature Rev. Mol. Cell Biol. 2, 621–627 (2001).

    CAS  Google Scholar 

  68. Alsheimer, M. The dance floor of meiosis: evolutionary conservation of nuclear envelope attachments and dynamics of meiotic telomeres. Genome Dyn. 5, 81–93 (2009).

    CAS  PubMed  Google Scholar 

  69. Hiraoka, Y. & Dernburg, A. F. The SUN rises on meiotic chromosome dynamics. Dev. Cell 17, 598–605 (2009). It is becoming increasingly apparent that the NE and cytoplasmic forces have facilitative roles in homologue pairing. This is a comprehensive review of recent and important work.

    CAS  PubMed  Google Scholar 

  70. Penkner, A. M. et al. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell 139, 920–933 (2009).

    CAS  PubMed  Google Scholar 

  71. Sato, A. et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139, 907–919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding, X. et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12, 863–872 (2007).

    CAS  PubMed  Google Scholar 

  73. Chi, Y. H. et al. Requirement for Sun1 in the expression of meiotic reproductive genes and piRNA. Development 136, 965–973 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Paigen, K. et al. The recombinational anatomy of a mouse chromosome. PLoS Genet. 4, e1000119 (2008).

    PubMed  PubMed Central  Google Scholar 

  75. Liu, L. et al. Irregular telomeres impair meiotic synapsis and recombination in mice. Proc. Natl Acad. Sci. USA 101, 6496–6501 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. de Boer, E. & Heyting, C. The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115, 220–234 (2006).

    PubMed  Google Scholar 

  77. Costa, Y. & Cooke, H. J. Dissecting the mammalian synaptonemal complex using targeted mutations. Chromosome Res. 15, 579–589 (2007).

    CAS  PubMed  Google Scholar 

  78. Yang, F. & Wang, P. J. The mammalian synaptonemal complex: a scaffold and beyond. Genome Dyn. 5, 69–80 (2009).

    CAS  PubMed  Google Scholar 

  79. Suja, J. A. & Barbero, J. L. Cohesin complexes and sister chromatid cohesion in mammalian meiosis. Genome Dyn. 5, 94–116 (2009).

    CAS  PubMed  Google Scholar 

  80. Revenkova, E. et al. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nature Cell Biol. 6, 555–562 (2004). This paper provides genetic and cellular evidence for the important role of meiosis-specific cohesin molecules in chromosome behaviour during meiosis.

    CAS  PubMed  Google Scholar 

  81. Bannister, L. A., Reinholdt, L. G., Munroe, R. J. & Schimenti, J. C. Positional cloning and characterization of mouse mei8, a disrupted allele of the meiotic cohesin Rec8. Genesis 40, 184–194 (2004).

    CAS  PubMed  Google Scholar 

  82. Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. & McKay, M. J. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 8, 949–961 (2005).

    CAS  PubMed  Google Scholar 

  83. Yuan, L. et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5, 73–83 (2000).

    CAS  PubMed  Google Scholar 

  84. Yuan, L. et al. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296, 1115–1118 (2002).

    CAS  PubMed  Google Scholar 

  85. Yang, F. et al. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J. Cell Biol. 173, 497–507 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. de Vries, F. A. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19, 1376–1389 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bolcun-Filas, E. et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet. 5, e1000393 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Bolcun-Filas, E. et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J. Cell Biol. 176, 741–747 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hamer, G. et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J. Cell Sci. 121, 2445–2451 (2008).

    CAS  PubMed  Google Scholar 

  90. Phillips, C. M. et al. Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nature Cell Biol. 11, 934–942 (2009).

    CAS  PubMed  Google Scholar 

  91. Pearlman, R. E., Tsao, N. & Moens, P. B. Synaptonemal complexes from DNase-treated rat pachytene chromosomes contain (GT)n and LINE/SINE sequences. Genetics 130, 865–872 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hernández-Hernández, A. et al. Differential distribution and association of repeat DNA sequences in the lateral element of the synaptonemal complex in rat spermatocytes. Chromosoma 117, 77–87 (2008).

    PubMed  Google Scholar 

  93. Sourirajan, A. & Lichten, M. Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev. 22, 2627–2632 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jordan, P. et al. Ipl1/Aurora B kinase coordinates synaptonemal complex disassembly with cell cycle progression and crossover formation in budding yeast. Genes Dev. 23, 2237–2251 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dix, D. J. et al. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 124, 4595–4603 (1997).

    CAS  PubMed  Google Scholar 

  96. Dix, D. J. et al. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc. Natl Acad. Sci. USA 93, 3264–3268 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun, F. & Handel, M. A. Regulation of the meiotic prophase I to metaphase I transition in mouse spermatocytes. Chromosoma 117, 471–485 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu, D. H., Dix, D. J. & Eddy, E. M. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development 124, 3007–3014 (1997).

    CAS  PubMed  Google Scholar 

  99. Hsieh, M., Zamah, A. M. & Conti, M. Epidermal growth factor-like growth factors in the follicular fluid: role in oocyte development and maturation. Semin. Reprod. Med. 27, 52–61 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Viera, A. et al. Condensin I reveals new insights on mouse meiotic chromosome structure and dynamics. PLoS ONE 2, e783 (2007).

    PubMed  PubMed Central  Google Scholar 

  101. Holt, J. E. & Jones, K. T. Control of homologous chromosome division in the mammalian oocyte. Mol. Hum. Reprod. 15, 139–147 (2009).

    CAS  PubMed  Google Scholar 

  102. Vogt, E., Kirsch-Volders, M., Parry, J. & Eichenlaub-Ritter, U. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. 651, 14–29 (2008).

    CAS  PubMed  Google Scholar 

  103. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    CAS  PubMed  Google Scholar 

  104. Hunt, P. A. & Hassold, T. J. Human female meiosis: what makes a good egg go bad? Trends Genet. 24, 86–93 (2008).

    CAS  PubMed  Google Scholar 

  105. LeMaire-Adkins, R. & Hunt, P. A. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics 156, 775–783 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Pardo-Manuel de Villena, F. P. M. & Sapienza, C. Female meiosis drives karyotypic evolution in mammals. Genetics 159, 1179–1189 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Pardo-Manuel de Villena, F. & Sapienza, C. Nonrandom segregation during meiosis: the unfairness of females. Mamm. Genome 12, 331–339 (2001).

    CAS  PubMed  Google Scholar 

  108. Mailhes, J. B. Faulty spindle checkpoint and cohesion protein activities predispose oocytes to premature chromosome separation and aneuploidy. Environ. Mol. Mutagen. 49, 642–658 (2008).

    CAS  PubMed  Google Scholar 

  109. Hodges, C. A., Revenkova, E., Jessberger, R., Hassold, T. J. & Hunt, P. A. SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nature Genet. 37, 1351–1355 (2005).

    CAS  PubMed  Google Scholar 

  110. Leland, S. et al. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Proc. Natl Acad. Sci. USA 106, 12776–12781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Duncan, F. E., Chiang, T., Schultz, R. M. & Lampson, M. A. Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol. Reprod. 81, 768–776 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Miyamoto, T. et al. Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest. J. Assist. Reprod. Genet. 25, 553–557 (2008).

    PubMed  PubMed Central  Google Scholar 

  113. Miyamoto, T. et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362, 1714–1719 (2003).

    CAS  PubMed  Google Scholar 

  114. Sato, H. et al. Polymorphic alleles of the human MEI1 gene are associated with human azoospermia by meiotic arrest. J. Hum. Genet. 51, 533–540 (2006).

    CAS  PubMed  Google Scholar 

  115. Mandon-Pepin, B. et al. Human infertility: meiotic genes as potential candidates. Gynecol. Obstet. Fertil. 30, 817–821 (2002).

    CAS  PubMed  Google Scholar 

  116. Bannister, L. et al. A dominant, recombination-defective allele of Dmc1 causing male-specific sterility. PLoS Biol. 5, e105 (2007).

    PubMed  PubMed Central  Google Scholar 

  117. Lupski, J. R. & Stankiewicz, P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet. 1, e49 (2005).

    PubMed  PubMed Central  Google Scholar 

  118. Lange, J. et al. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palidromes. Cell 138, 855–869 (2009). This paper provides an elegant analysis that demonstrates that the homologous recombination that maintains human Y chromosome palindromes can lead to genetic disorders of sex determination and differentiation and Turner syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    PubMed  Google Scholar 

  120. Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA 100, 11457–11462 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154 (2004).

    CAS  PubMed  Google Scholar 

  122. Nayernia, K. et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell 11, 125–132 (2006).

    CAS  PubMed  Google Scholar 

  123. Aflatoonian, B. et al. In vitro post-meiotic germ cell development from human embryonic stem cells. Hum. Reprod. 24, 3150–3159 (2009).

    CAS  PubMed  Google Scholar 

  124. Kee, K., Angeles, V. T., Flores, M., Nguyen, H. N. & Reijo Pera, R. A. Human DAZL, DAZ, and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 462, 222–225 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Nicholas, C. R., Haston, K. M., Grewall, A. K., Longacre, T. A. & Reijo Pera, R. A. Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum. Mol. Genet. 18, 4376–4389 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kubota, H. & Brinster, R. L. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal. Methods Cell Biol. 86, 59–84 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Morelli, M. A. & Cohen, P. E. Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130, 761–781 (2005).

    CAS  PubMed  Google Scholar 

  128. Holloway, J. K., Booth, J., Edelmann, W., McGowan, C. H. & Cohen, P. E. MUS81 generates a subset of MLH1–MLH3-independent crossovers in mammalian meiosis. PLoS Genet. 4, e1000186 (2008).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Cohen, J. Eppig, K. Paigen and L. Reinholdt for comments on the manuscript. We apologize to authors whose papers could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Angelman syndrome

Prader–Willi syndrome

FURTHER INFORMATION

Mary Ann Handel's homepage

John C. Schimenti's homepage

Glossary

Disjunction

The separation of chromosomes or chromatids during anaphase of mitosis or meiosis. The failure of chromosomes to separate at anaphase is called non-disjunction.

Aneuploidy

The presence of an abnormal number of chromosomes, either more or less than the diploid number. It is associated with cell and organismal inviability, birth defects and cancer.

Chromatid

An identical copy of a chromosome that is created through DNA replication. The two sister chromatids of a chromosome each become a chromosome when their centromeres are separated in mitosis or in the second meiotic division.

Synapsis

The intimate apposition that occurs after pairing of homologous chromosomes along their length during prophase I of meiosis; synapsis is mediated by a proteinaceous structure, the synaptonemal complex.

Double-strand break

A serious form of DNA damage that is created enzymatically during meiosis and that stimulates repair by crossover or non-crossover recombination.

Induced pluripotent stem cells

These are derived from somatic cells by 'reprogramming' or de-differentiation triggered by the transfection of pluripotency genes, which alters the somatic cells to a state that is similar to that of embryonic stem cells.

Cohesins

Multi-protein complexes that maintain tight association (cohesion) of sister chromatids.

Resection

In the context of recombination, strand-biased enzymatic removal of nucleotides at the site of a double-strand break. In most recombination models, resection occurs in the 5′ to 3′ direction.

Gene conversion

Originally coined to describe non-Mendelian segregation of alleles obtained from a single meiosis, this typically (but not always) refers to a non-reciprocal form of non-crossover recombination that results in the alteration of the sequence of a gene (or DNA sequence) to that of its homologue. In ectopic gene conversion, the donor and recipient DNA strands are not allelic copies of the same locus.

Checkpoint

A mechanism that monitors the fidelity of cellular events and triggers cell cycle arrest and possibly apoptosis when errors are not corrected. In meiosis, unrepaired DNA damage and synapsis failure trigger checkpoints that can halt meiotic progression.

Piwi-interacting RNAs

Small germ-cell RNAs that interact with PIWI proteins. They are thought to be involved in the repression of retrotransposon expression during gametogenesis.

Interference

A phenomenon in which the occurrence of a crossover recombination at one position on a chromosome suppresses the frequency of additional, nearby crossovers; inhibition decreases with physical distance.

Bivalent

Two paired or synapsed homologous chromosomes, each formed of two sister chromatids.

Dictyate

A 'resting' stage at the end of the first meiotic prophase. It is at the end of diplonema but before the resumption of meiosis and the onset of progress to metaphase of the first meiotic division.

Anastral spindle

A spindle formed without centrosomes (microtubule- organizing centres) or the astral microtubules that usually surround the centrioles at spindle poles.

Univalent

An unpaired chromosome at metaphase I: usually one that has failed to synapse or recombine with its homologue.

Acrocentric chromosome

A chromosome with a centromere near to one end so that one arm is very short.

Isodicentric chromosome

A cytogenetically anomalous chromosome characterized by the presence of two centromeres, with additional, identical copies of DNA segments joined end to end.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handel, M., Schimenti, J. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11, 124–136 (2010). https://doi.org/10.1038/nrg2723

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing