Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Systems genetics analysis of cancer susceptibility: from mouse models to humans

Abstract

Genetic studies of cancer susceptibility have shown that most heritable risk cannot be explained by the main effects of common alleles. This may be due to unknown gene–gene or gene–environment interactions and the complex roles of many genes at different stages of cancer. Studies using mouse models of cancer suggest that methods that integrate genetic analysis and genomic networks with knowledge of cancer biology can help to extend our understanding of heritable cancer susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Application of systems genetics to cancer susceptibility.
Figure 2: Using systems genetics to identify candidate loci and genes.
Figure 3: Germline and environmental effects identified through systems genetics.

Similar content being viewed by others

References

  1. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008).

    Article  CAS  Google Scholar 

  2. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  Google Scholar 

  3. Zanke, B. W. et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nature Genet. 39, 989–994 (2007).

    Article  CAS  Google Scholar 

  4. Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nature Genet. 39, 984–988 (2007).

    Article  CAS  Google Scholar 

  5. Ewart-Toland, A. et al. Aurora-A/STK15 T+91A is a general low penetrance cancer susceptibility gene: a meta-analysis of multiple cancer types. Carcinogenesis 26, 1368–1373 (2005).

    Article  CAS  Google Scholar 

  6. Ramus, S. J. et al. Consortium analysis of 7 candidate SNPs for ovarian cancer. Int. J. Cancer 123, 380–388 (2008).

    Article  CAS  Google Scholar 

  7. Gu, J. et al. Polymorphisms of STK15 (Aurora-A) gene and lung cancer risk in Caucasians. Carcinogenesis 28, 350–355 (2007).

    Article  CAS  Google Scholar 

  8. Lu, L. Y. et al. Aurora A is essential for early embryonic development and tumor suppression. J. Biol. Chem. 283, 31785–31790 (2008).

    Article  CAS  Google Scholar 

  9. Mao, J. H. et al. Crosstalk between Aurora-A and p53: frequent deletion or downregulation of Aurora-A in tumors from p53 null mice. Cancer Cell 11, 161–173 (2007).

    Article  CAS  Google Scholar 

  10. Mao, J. H. et al. Genetic variants of Tgfb 1 act as context-dependent modifiers of mouse skin tumor susceptibility. Proc. Natl. Acad. Sci. USA 103, 8125–8130 (2006).

    Article  CAS  Google Scholar 

  11. Cui, W. et al. TGFβ inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531–542 (1996).

    Article  CAS  Google Scholar 

  12. Rowland, B. D. & Peeper, D. S. KLF4, p21 and context-dependent opposing forces in cancer. Nature Rev. Cancer 6, 11–23 (2006).

    Article  CAS  Google Scholar 

  13. Xie, J. et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res. 57, 2369 (1997).

    CAS  PubMed  Google Scholar 

  14. Dong, J., Gailani, M. R., Pomeroy, S. L., Reardon, D. & Bale, A. E. Identification of PATCHED mutations in medulloblastomas by direct sequencing. Hum. Mutat. 16, 89–90 (2000).

    Article  CAS  Google Scholar 

  15. Wakabayashi, Y., Mao, J. H., Brown, K., Girardi, M. & Balmain, A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature 445, 761 (2007).

    Article  CAS  Google Scholar 

  16. Flint, J., Valdar, W., Shifman, S. & Mott, R. Strategies for mapping and cloning quantitative trait genes in rodents. Nature Rev. Genet. 6, 271–286 (2005).

    Article  CAS  Google Scholar 

  17. Ghoussaini, M. et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J. Natl Cancer Inst. 100, 962–966 (2008).

    Article  CAS  Google Scholar 

  18. Frankel, W. N. Taking stock of complex trait genetics in mice. Trends Genet. 11, 471 (1995).

    Article  CAS  Google Scholar 

  19. Samuelson, D. J. et al. Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk. Proc. Natl Acad. Sci. USA 104, 6299–6304 (2007).

    Article  CAS  Google Scholar 

  20. MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of Apc Min-induced intestinal neoplasia. Cell 81, 957–966 (1995).

    Article  CAS  Google Scholar 

  21. Cormier, R. T. et al. The Mom 1AKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogene 19, 3182–3192 (2000).

    Article  CAS  Google Scholar 

  22. Balmain, A. Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models. Cell 108, 145–152 (2002).

    Article  CAS  Google Scholar 

  23. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nature Genet. 40, 695–701 (2008).

    Article  CAS  Google Scholar 

  24. Fearnhead, N. S., Winney, B. & Bodmer, W. F. Rare variant hypothesis for multifactorial inheritance: susceptibility to colorectal adenomas as a model. Cell Cycle 4, 521–525 (2005).

    Article  CAS  Google Scholar 

  25. Demant, P. Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nature Rev. Genet. 4, 721–734 (2003).

    Article  CAS  Google Scholar 

  26. Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  Google Scholar 

  27. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  Google Scholar 

  28. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    Article  CAS  Google Scholar 

  29. Chesler, E. J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genet. 37, 233–242 (2005).

    Article  CAS  Google Scholar 

  30. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genet. 37, 243–253 (2005).

    Article  CAS  Google Scholar 

  31. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article  CAS  Google Scholar 

  32. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    Article  CAS  Google Scholar 

  33. Quigley, D. A. et al. Genetic architecture of mouse skin inflammation and tumour susceptibility. Nature 458, 505–508 (2009).

    Article  CAS  Google Scholar 

  34. Ghazalpour, A. et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2, e130 (2006).

    Article  Google Scholar 

  35. Nagase, H. et al. Distinct genetic loci control development of benign and malignant skin tumours in mice. Nature Genet. 10, 424–429 (1995).

    Article  CAS  Google Scholar 

  36. Manenti, G. et al. Genetic mapping of a pulmonary adenoma resistance (Par1) in mouse. Nature Genet. 12, 455–457 (1996).

    Article  CAS  Google Scholar 

  37. To, M. D. et al. A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2 LA2 mice. Nature Genet. 38, 926–930 (2006).

    Article  CAS  Google Scholar 

  38. Park, Y. G. et al. Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nature Genet. 37, 1055–1062 (2005).

    Article  CAS  Google Scholar 

  39. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet. 40, 1291–1299 (2008).

    Article  CAS  Google Scholar 

  40. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  Google Scholar 

  41. Giovannucci, E. Vitamin D status and cancer incidence and mortality. Adv. Exp. Med. Biol. 624, 31–42 (2008).

    Article  CAS  Google Scholar 

  42. Zinser, G. M., Sundberg, J. P. & Welsh, J. Vitamin D3 receptor ablation sensitizes skin to chemically induced tumorigenesis. Carcinogenesis 23, 2103–2109 (2002).

    Article  CAS  Google Scholar 

  43. Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genet. 37, 710–717 (2005).

    Article  CAS  Google Scholar 

  44. Yang, X. et al. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nature Genet. 41, 415–423 (2009).

    Article  CAS  Google Scholar 

  45. Gerke, J., Lorenz, K. & Cohen, B. Genetic interactions between transcription factors cause natural variation in yeast. Science 323, 498–501 (2009).

    Article  CAS  Google Scholar 

  46. Suzuki, H. et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genet. 41, 553–562 (2009).

    Article  CAS  Google Scholar 

  47. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    Article  CAS  Google Scholar 

  48. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    Article  CAS  Google Scholar 

  49. Foss, E. J. et al. Genetic basis of proteome variation in yeast. Nature Genet. 39, 1369–1375 (2007).

    Article  CAS  Google Scholar 

  50. Mao, J. H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004).

    Article  CAS  Google Scholar 

  51. Nagase, H., Mao, J. H. & Balmain, A. Allele-specific Hras mutations and genetic alterations at tumor susceptibility loci in skin carcinomas from interspecific hybrid mice. Cancer Res. 63, 4849–4853 (2003).

    CAS  PubMed  Google Scholar 

  52. Zhang, Z. et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genet. 29, 25–33 (2001).

    Article  CAS  Google Scholar 

  53. Martin, M. D. et al. Effect of ablation or inhibition of stromal matrix metalloproteinase-9 on lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res. 68, 6251 (2008).

    Article  CAS  Google Scholar 

  54. Sequist, L. V., Bell, D. W., Lynch, T. J. & Haber, D. A. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol. 25, 587–595 (2007).

    Article  CAS  Google Scholar 

  55. Tan, S. H., Lee, S. C., Goh, B. C. & Wong, J. Pharmacogenetics in breast cancer therapy. Clin. Cancer Res. 14, 8027 (2008).

    Article  CAS  Google Scholar 

  56. Schadt, E. E. & Lum, P. Y. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J. Lipid Res. 47, 2601–2613 (2006).

    Article  CAS  Google Scholar 

  57. Margolin, A. A. & Califano, A., Theory and limitations of genetic network inference from microarray data. Ann. NY Acad. Sci. 1115, 51–72 (2007).

    Article  CAS  Google Scholar 

  58. Voy, B. H. et al. Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Comp. Biol. 2, e89 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (grant U01 CA84244) and the US Department of Energy (DE-FG02-03ER63630). A.B. acknowledges support from the Barbara Bass Bakar Chair of Cancer Genetics. We thank members of the Balmain laboratory, R. Akhurst and H. Quigley for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Balmain.

Related links

Related links

FURTHER INFORMATION

Balmain Laboratory web page

WebQTL

Jackson Laboratory Mouse Genome Informatics resources

Glossary

Comparative genomic hybridization

A method of identifying changes in DNA copy number that compares a test genome with a reference genome. Frequently used in cancer research to identify genomic amplifications and deletions associated with tumour activity.

Congenic

A strain that is produced by a breeding strategy in which recombinants between two inbred strains are backcrossed to produce a strain that carries a single genomic segment from one strain on the genetic background of the other.

Expression QTL

(eQTL). A QTL for which the trait under control is gene expression. An eQTL may affect a gene near the locus (acting in cis) or it may act at a distance (acting in trans).

Heuristic algorithm

An algorithm that produces an approximate solution to a problem that is not guaranteed to be correct in the strict sense. Useful for problems for which no exact solution can be found in a reasonable period of time.

MicroRNA

A form of ssRNA typically 2025 nucleotides long that is involved in regulating the expression of other genes, either through inhibiting protein translation or degrading a target mRNA transcript through a process that is similar to RNAi.

Mutual information

An information-theoretic measurement of the dependence between two random variables. The more knowledge one variables value conveys about the other variables value, the greater the mutual information.

Network

A set of nodes and a set of edges that connect those nodes, formally called a graph. Many problems can be represented using graphs and there is a large mathematical and computer science literature dealing with their properties.

Probabilistic graphic model

A directed acyclic graph in which edges represent probabilistic assertions about relationships between nodes. Edge relationships can be inferred from available data using algorithms that discover the most likely relationships.

QTL

A genomic locus where allelic variation is associated with the value of a continuously varying trait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quigley, D., Balmain, A. Systems genetics analysis of cancer susceptibility: from mouse models to humans. Nat Rev Genet 10, 651–657 (2009). https://doi.org/10.1038/nrg2617

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing