Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo

Key Points

  • This Review aims to collate our current understanding of the molecular processes that govern the two necessary cell fate decisions made by the developing preimplantation embryo until the blastocyst stage. We revisit some of the 'classical' models put forward and discuss their merit in the light of new discoveries and propose that, far from being exclusive, each model is likely to harbour at least some fundamental truths.

  • We introduce the first cell fate decision that is defined as the cell's choice to either occupy an inner position in the developing embryo and so retain pluripotency or to populate a position on the outside and differentiate into trophectoderm. We discuss the roles of cellular polarization and position in regulating trophectoderm differentiation and focus on the essential trophectoderm transcription factor, CDX2, to highlight these points.

  • In addition, we explore epigenetic components of the first cell fate decision and discuss the origins in developmental bias and asymmetry in CDX2 expression. We conclude by revisiting the three classical models of the first cell fate decision, the early asymmetry, inside–outside and polarization hypotheses, in the context of recent discoveries and argue that each model contains fundamental truths.

  • We introduce the second cell fate decision whereby cells at the surface of the inner cell mass that line the blastocoel cavity become set aside and form the primitive endoderm and are distinct from the deeper inner cells that form the epiblast, which is comprised of progenitor cells for the fetus proper.

  • We review the two classical models of primitive endoderm formation, the positional induction and cell sorting hypotheses, and discuss the experimental evidence in support of these. In the context of these two classical models, we introduce new evidence detailing the importance of the developmental stage in which inner cells are originally derived on the formation of primitive endoderm and epiblast cell populations. Given these new data, we propose a third refined model of the second cell fate decision that we term the social mobility model.

Abstract

The preimplantation mammalian embryo offers a striking opportunity to address the question of how and why apparently identical cells take on separate fates. Two cell fate decisions are taken before the embryo implants; these decisions set apart a group of pluripotent cells, progenitors for the future body, from the distinct extraembryonic lineages of trophectoderm and primitive endoderm. New molecular, cellular and developmental insights reveal the interplay of transcriptional regulation, epigenetic modifications, cell position and cell polarity in these two fate decisions in the mouse. We discuss how mechanisms proposed in previously distinct models might work in concert to progressively reinforce cell fate decisions through feedback loops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional regulation and cell fate decisions in preimplantation development.
Figure 2: Transcriptional circuits in the first cell fate decision.
Figure 3: Integration of three hypotheses for the emergence of inside and outside cell differences.
Figure 4: Second cell fate decision — primitive endoderm formation.

Similar content being viewed by others

References

  1. Wang, Q. T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Hamatani, T., Carter, M. G., Sharov, A. A. & Ko, M. S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Schultz, R. M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Schier, A. F. The maternal–zygotic transition: death and birth of RNAs. Science 316, 406–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lykke-Andersen, K. et al. Maternal Argonaute 2 is essential for early mouse development at the maternal–zygotic transition. Mol. Biol. Cell 19, 4383–4392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Torres-Padilla, M. E. & Zernicka-Goetz, M. Role of TIF1α as a modulator of embryonic transcription in the mouse zygote. J. Cell Biol. 174, 329–338 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun, F., Tang, F., Yan, A. Y., Fang, H. Y. & Sheng, H. Z. Expression of SRG3, a chromatin-remodelling factor, in the mouse oocyte and early preimplantation embryos. Zygote 15, 129–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Aoki, F., Worrad, D. M. & Schultz, R. M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Yeo, S., Lee, K. K., Han, Y. M. & Kang, Y. K. Methylation changes of lysine 9 of histone H3 during preimplantation mouse development. Mol. Cell 20, 423–428 (2005).

    CAS  Google Scholar 

  11. Santos, F., Peters, A. H., Otte, A. P., Reik, W. & Dean, W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280, 225–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bultman, S. J. et al. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 20, 1744–1754 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto, M. et al. Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo. J. Cell Biol. 184, 323–334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soares, M. L., Torres-Padilla, M. E. & Zernicka-Goetz, M. Bone morphogenetic protein 4 signaling regulates development of the anterior visceral endoderm in the mouse embryo. Dev. Growth Differ. 50, 615–621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez, T. A., Srinivas, S., Clements, M. P., Smith, J. C. & Beddington, R. S. Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 132, 2513–2520 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Richardson, L., Torres-Padilla, M. E. & Zernicka-Goetz, M. Regionalised signalling within the extraembryonic ectoderm regulates anterior visceral endoderm positioning in the mouse embryo. Mech. Dev. 123, 288–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Graham, C. F. & Deussen, Z. A. Features of cell lineage in preimplantation mouse development. J. Embryol. Exp. Morphol. 48, 53–72 (1978).

    CAS  PubMed  Google Scholar 

  19. Graham, C. F. & Lehtonen, E. Formation and consequences of cell patterns in preimplantation mouse development. J. Embryol. Exp. Morphol. 49, 277–294 (1979).

    CAS  PubMed  Google Scholar 

  20. Pedersen, R. A., Wu, K. & Balakier, H. Origin of the inner cell mass in mouse embryos: cell lineage analysis by microinjection. Dev. Biol. 117, 581–595 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, M. H. & Ziomek, C. A. The foundation of two distinct cell lineages within the mouse morula. Cell 24, 71–80 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Jedrusik, A. et al. Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev. 22, 2692–2706 (2008). The first paper to indicate positive feedback between Cdx2 expression and cell polarization in the mouse embryo and its importance for trophectoderm specification. Also shows that 8-cell stage heterogeneity between cells in the levels of factors such as CDX2 depends on the cell origins and affects cell fate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435–439 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor OCT4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005). The first study to show that CDX2 is required for trophectoderm differentiation and the maintenance of the cavity in the mouse embryo. It also shows that the elimination of Cdx2 prevents downregulation of pluripotency factors in outside cells.

    Article  CAS  PubMed  Google Scholar 

  29. Beck. et al. A study of regional gut endoderm potency by analysis of Cdx2 null mutant chimeric mice. Dev. Biol. 255, 399–406 (20003).

    Article  CAS  PubMed  Google Scholar 

  30. Russ, A. P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Loh, Y. H. et al. The OCT4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chew, J. L. et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the OCT4/Sox2 complex in embryonic stem cells. Mol. Cell Biol. 25, 6031–6046 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beland, M. et al. Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol. Cell Biol. 24, 5028–5038 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elling, U., Klasen, C., Eisenberger, T., Anlag, K. & Treier, M. Murine inner cell mass-derived lineages depend on Sall4 function. Proc. Natl Acad. Sci. USA 103, 16319–16324 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, J. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biol. 8, 1114–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Nishioka, N. et al. Tead4 is required for specification of trophectoderm in preimplantation mouse embryos. Mech. Dev. 125, 270–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Tarkowski, A. K. & Wroblewska, J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J. Embryol. Exp. Morphol. 18, 155–180 (1967).

    CAS  PubMed  Google Scholar 

  40. Fleming, T. P. & Johnson, M. H. From egg to epithelium. Annu. Rev. Cell Biol. 4, 459–485 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Plusa, B. et al. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J. Cell Sci. 118, 505–515 (2005). The first paper to show that the downregulation of cell polarity molecules, such as PAR3 and aPKC, leads cells to change their position from outside to inside, where they develop as ICM.

    Article  CAS  PubMed  Google Scholar 

  42. Thomas, F. C. et al. Contribution of JAM-1 to epithelial differentiation and tight-junction biogenesis in the mouse preimplantation embryo. J. Cell Sci. 117, 5599–5608 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Vinot, S. et al. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev. Biol. 282, 307–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, M. H. & Ziomek, C. A. Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage. Dev. Biol. 95, 211–218 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Fleming, T. P., Sheth, B. & Fesenko, I. Cell adhesion in the preimplantation mammalian embryo and its role in trophectoderm differentiation and blastocyst morphogenesis. Front. Biosci. 6, D1000–D1007 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Handyside, A. H. Time of commitment of inside cells isolated from preimplantation mouse embryos. J. Embryol. Exp. Morphol. 45, 37–53 (1978).

    CAS  PubMed  Google Scholar 

  47. Spindle, A. I. Trophoblast regeneration by inner cell masses isolated from cultured mouse embryos. J. Exp. Zool. 203, 483–489 (1978).

    Article  CAS  PubMed  Google Scholar 

  48. Rossant, J. & Lis, W. T. Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev. Biol. 70, 255–261 (1979).

    Article  CAS  PubMed  Google Scholar 

  49. Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T. & Zernicka-Goetz, M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445, 214–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Ralston, A. & Rossant, J. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev. Biol. 313, 614–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009). Identifies the signalling pathway that is likely to sense cell position from the 16-cell stage, which is important to maintain the required high levels of Cdx2 expression in the outside, but not inside, cells.

    Article  CAS  PubMed  Google Scholar 

  53. Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007). Reports co-expression of pluripotency genes with genes required for cell differentiation at the morula stage. Proposes that cell fate decisions in the mouse embryo occur randomly.

    Article  CAS  PubMed  Google Scholar 

  54. Bischoff, M., Parfitt, D. E. & Zernicka-Goetz, M. Formation of the embryonic–abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions. Development 135, 953–962 (2008). The first complete analysis of lineage tracing from the 2-cell to blastocyst stages. It monitors cell division orientations, cell cycle length and the origins and fates of all cells. It reveals that cell origins affect division orientation and thus can bias allocation of cells to different lineages at the blastocyst stage.

    Article  CAS  PubMed  Google Scholar 

  55. Piotrowska-Nitsche, K., Perea-Gomez, A., Haraguchi, S. & Zernicka-Goetz, M. Four-cell stage mouse blastomeres have different developmental properties. Development 132, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Erhardt, S. et al. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130, 4235–4248 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. O'Neill, L. P., VerMilyea, M. D. & Turner, B. M. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genet. 38, 835–841 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Ng, R. K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nature Cell Biol. 10, 1280–1290 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Dalcq, A. M. [Cytochemistry of the 1st Stages of Development in Various Mammals.] Annee Biol. 59, 129–155 (1965) (in French).

    CAS  PubMed  Google Scholar 

  61. Gardner, R. L. Can developmentally significant spatial patterning of the egg be discounted in mammals? Hum. Reprod. Update 2, 3–27 (1996). A critical review of the literature that resurrected a previously dismissed possibility that there might be some differences between early blastomeres in the mouse embryo that relate to the animal–vegetal polarity of the egg.

    Article  CAS  PubMed  Google Scholar 

  62. Suwinska, A., Czolowska, R., Ozdzenski, W. & Tarkowski, A. K. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and OCT4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev. Biol. 322, 133–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Morrisey, E. E. et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 12, 3579–3590 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R. & Grosveld, F. The transcription factor GATA6 is essential for early extraembryonic development. Development 126, 723–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10, 615–624 (2006). This study originally identified the 'salt and pepper' pattern of expression of Nanog and Gata6 in the early ICM. This led to the first suggestion that cell sorting might be involved in PE specification.

    Article  CAS  PubMed  Google Scholar 

  69. Yang, D. H. et al. Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev. Biol. 251, 27–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Miner, J. H., Li, C., Mudd, J. L., Go, G. & Sutherland, A. E. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 131, 2247–2256 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Gerbe, F., Cox, B., Rossant, J. & Chazaud, C. Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Dev. Biol. 313, 594–602 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Dziadek, M. Cell differentiation in isolated inner cell masses of mouse blastocysts in vitro: onset of specific gene expression. J. Embryol. Exp. Morphol. 53, 367–379 (1979).

    CAS  PubMed  Google Scholar 

  73. Gardner, R. L., Lyon, M. F., Evans, E. P. & Burtenshaw, M. D. Clonal analysis of X-chromosome inactivation and the origin of the germ line in the mouse embryo. J. Embryol. Exp. Morphol. 88, 349–363 (1985).

    CAS  PubMed  Google Scholar 

  74. Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rossant, J., Chazaud, C. & Yamanaka, Y. Lineage allocation and asymmetries in the early mouse embryo. Philos. Trans. R. Soc. Lond. B 358, 1341–1348 (2003); discussion 1349.

    Article  CAS  Google Scholar 

  76. Plusa, B., Piliszek, A., Frankenberg, S., Artus, J. & Hadjantonakis, A. K. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–3091 (2008). This study presents time-lapse dynamics of the expression patterns of a PE marker and is the first to show that progenitor cells for PE sort from deep to surface compartments. However, it also shows that some cells expressing this PE marker change their expression pattern or undertake apoptosis if they stay deep.

    Article  CAS  PubMed  Google Scholar 

  77. Meilhac, S. et al. Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev. Biol. 5 May 2009 (doi:10.1016/j.ydbio.2009.04.036). This paper shows that progenitors for both PE and epiblast sort and that this is an active, actin-dependent process. However, it also shows that a fraction of early ICM cells contribute to both lineages. It leads to the proposal that both cell movement and induction participate in lineage segregation.

    Article  CAS  PubMed  Google Scholar 

  78. Chisholm, J. C. & Houliston, E. Cytokeratin filament assembly in the preimplantation mouse embryo. Development 101, 565–582 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Weber, R. J., Pedersen, R. A., Wianny, F., Evans, M. J. & Zernicka-Goetz, M. Polarity of the mouse embryo is anticipated before implantation. Development 126, 5591–5598 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Perea-Gomez, A. et al. Regionalization of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder. BMC Dev. Biol. 7, 96 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M. & Goldfarb, M. Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–249 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Chai, N. et al. FGF is an essential regulator of the fifth cell division in preimplantation mouse embryos. Dev. Biol. 198, 105–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K. & Lonai, P. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl Acad. Sci. USA 95, 5082–5087 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gardner, R. L. The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal–vegetal axis of the zygote in the mouse. Development 124, 289–301 (1997). This is the first paper to show that the second polar body remains firmly attached to the embryo in undisturbed development, and therefore provides an enduring marker of the animal–vegetal axis. It is also the first paper to show the correlation of polarity between the zygote and the blastocyst.

    Article  CAS  PubMed  Google Scholar 

  85. Plusa, B. et al. The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434, 391–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Hiiragi, T. & Solter, D. First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature 430, 360–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Zernicka-Goetz, M. The first cell-fate decisions in the mouse embryo: destiny is a matter of both chance and choice. Curr. Opin. Genet. Dev. 16, 406–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kurotaki, Y., Hatta, K., Nakao, K., Nabeshima, Y. & Fujimori, T. Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape. Science 316, 719–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Gardner, R. L. The axis of polarity of the mouse blastocyst is specified before blastulation and independently of the zona pellucida. Hum. Reprod. 22, 798–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Wu, Q. et al. CARM1 is required in ES cells to maintain pluripotency and resist differentiation. Stem Cells (in the press).

Download references

Acknowledgements

We are grateful to the Wellcome Trust for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Zernicka-Goetz.

Related links

Related links

FURTHER INFORMATION

Magdalena Zernicka-Goetz's homepage

Glossary

Blastocyst

A preimplantation embryo that contains a fluid-filled cavity (the blastocoel), a focal cluster of cells from which the embryo will develop (the inner cell mass) and peripheral trophoblast cells, which form the placenta.

Trophectoderm

The outer layer of the blastocyst stage embryo that will give rise to the extraembryonic ectoderm after implantation and will provide the bulk of the embryonic part of the placenta.

Inner cell mass

A small group of undifferentiated cells in the blastocyst, which gives rise to the entire fetus and some of its extraembryonic tissues.

Primitive endoderm

An early differentiated cell type that lines the inner surface of the blastocyst cavity. It gives rise to the visceral and parietal extraembryonic endoderm after implantation.

Epiblast

The epithelial tissue that develops from the inner cell mass of the blastocyst and that gives rise to all three definitive germ layers of the embryo during gastrulation: the ectoderm, mesoderm and endoderm.

Embryonic–abembryonic axis

The side of blastocyst on which the inner cell mass (containing progenitor cells for the body proper) is localized is defined as the embryonic pole, with the opposing pole (containing the cavity) defined as abembryonic. Accordingly, these poles define the embryonic–abembryonic axis.

Chromatin remodelling

Changes in the structural properties of chromatin (either covalent post-translational modifications or architectural properties) that ultimately affect its accessibility to protein factors, such astranscription factors or RNA polymerase, that can result in underlying gene expression changes.

RNA-induced silencing complex

A complex made up of an Argonaute protein and small RNA that inhibits translation of target RNAs through degradative and non-degradative mechanisms.

Blastomere

An early embryonic cell that is derived from the cleavage divisions of a fertilized egg.

Polarization

Generation of morphological and molecular differences along the apical–basal axis of cells such asblastomeres.

Animal pole

The position on the oocyte, and later on the embryo, in which the two asymmetric meiotic divisions take place. The first of these meiotic divisions takes place during oocyte maturation and the second after fertilization, both lead to extrusion of small cells called polar bodies. The second polar body remains attached and marks the animal–vegetal axis.

Vegetal pole

The position on the oocyte, and later on the embryo, opposite where the two asymmetric meiotic divisions take place.

Cavitation

The process by which the fluid-filled vesicular cavity (the blastocoel) is generated in approximately 32-cell stage embryos, forming a morphologically recognizable blastocyst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zernicka-Goetz, M., Morris, S. & Bruce, A. Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10, 467–477 (2009). https://doi.org/10.1038/nrg2564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing