Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Linking DNA methylation and histone modification: patterns and paradigms

Key Points

  • The basic pattern of genomic DNA methylation is established at the time of embryo implantation through a wave of de novo methylation, but CpG islands are protected through a mechanism that involves the recognition of histone H3 lysine 4 methylation.

  • DNA methylation and histone modification influence each other during development. Histone methylation can help to direct DNA methylation patterns, and DNA methylation seems to serve as a template for rebuilding histone modification patterns following DNA replication.

  • Targeted de novo methylation during development involves SET domain-containing proteins that are capable of specifically methylating histones as well as recruiting DNA methyltransferases.

  • Targeted gene silencing can be mediated by repressor complexes, heterochromatinization and DNA methylation. DNA methylation may be a secondary event that provides long-term stability.

  • During reprogramming of somatic cells, pluripotency genes become reactivated in a process that involves changes in histone modification followed by demethylation of the DNA.

  • De novo methylation in cancer is probably targeted to some genes marked with histone H3 lysine 27 methylation.

Abstract

Both DNA methylation and histone modification are involved in establishing patterns of gene repression during development. Certain forms of histone methylation cause local formation of heterochromatin, which is readily reversible, whereas DNA methylation leads to stable long-term repression. It has recently become apparent that DNA methylation and histone modification pathways can be dependent on one another, and that this crosstalk can be mediated by biochemical interactions between SET domain histone methyltransferases and DNA methyltransferases. Relationships between DNA methylation and histone modification have implications for understanding normal development as well as somatic cell reprogramming and tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of bimodal methylation.
Figure 2: Turning off pluripotency genes.
Figure 3: SET domain-containing histone methyltransferases interact with DNMT3A and DNMT3B.
Figure 4: A model of somatic cell reprogramming.
Figure 5: A model of de novo methylation in cancer.

Similar content being viewed by others

References

  1. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev. 6, 705–714 (1992).

    CAS  PubMed  Google Scholar 

  2. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  3. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  PubMed  Google Scholar 

  4. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

    CAS  PubMed  Google Scholar 

  5. Siegfried, Z. et al. DNA methylation represses transcription in vivo. Nature Genet. 22, 203–206 (1999).

    CAS  PubMed  Google Scholar 

  6. Macleod, D., Charlton, J., Mullins, J. & Bird, A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).

    CAS  PubMed  Google Scholar 

  7. Frank, D. et al. Demethylation of CpG islands in embryonic cells. Nature 351, 239–241 (1991).

    CAS  PubMed  Google Scholar 

  8. Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007). References 8 and 10 show that DNMT3L interacts with unmethylated H3K4 through its N terminus and with DNMT3A through its C terminus, thus linking the DNA methylation machinery to the modification state of histone tails.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A. & Cheng, X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248–251 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    CAS  PubMed  Google Scholar 

  12. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet. 39, 457–466 (2007).

    CAS  PubMed  Google Scholar 

  13. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008). References 13 and 14 present genome-wide DNA methylation maps of pluripotent and differentiated stem cells. They show a link between DNA methylation patterns and histone methylation patterns.

    CAS  PubMed  Google Scholar 

  14. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Okitsu, C. Y. & Hsieh, C. L. DNA methylation dictates histone H3K4 methylation. Mol. Cell. Biol. 27, 2746–2757 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).

    CAS  PubMed  Google Scholar 

  17. Gidekel, S. & Bergman, Y. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J. Biol. Chem. 277, 34521–34530 (2002).

    CAS  PubMed  Google Scholar 

  18. Sylvester, I. & Scholer, H. R. Regulation of the Oct-4 gene by nuclear receptors. Nucleic Acids Res. 22, 901–911 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ben-Shushan, E., Sharir, H., Pikarsky, E. & Bergman, Y. A dynamic balance between ARP-1/COUP-TFII, EAR-3/COUP-TFI, and retinoic acid receptor:retinoid X receptor heterodimers regulates Oct-3/4 expression in embryonal carcinoma cells. Mol. Cell. Biol. 15, 1034–1048 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fuhrmann, G. et al. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell 1, 377–387 (2001).

    CAS  PubMed  Google Scholar 

  21. Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biol. 8, 188–194 (2006). References 21 and 22 show that G9a inactivates early embryonic genes. Histone methylation is shown to block target gene reactivation in the absence of repressors, whereas DNA methylation prevents reprogramming.

    CAS  PubMed  Google Scholar 

  22. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Struct. Mol. Biol. 15, 1176–1183 (2008).

    CAS  Google Scholar 

  23. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    CAS  PubMed  Google Scholar 

  24. Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31, 2305–2312 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. USA 102, 152–157 (2005).

    CAS  PubMed  Google Scholar 

  26. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol. 6, 784–791 (2004).

    CAS  PubMed  Google Scholar 

  28. Malinina, L. Possible involvement of the RNAi pathway in trinucleotide repeat expansion diseases. J. Biomol. Struct. Dyn. 23, 233–235 (2005).

    CAS  PubMed  Google Scholar 

  29. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    CAS  PubMed  Google Scholar 

  30. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    CAS  PubMed  Google Scholar 

  32. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    CAS  PubMed  Google Scholar 

  33. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002). References 32 and 33 were the first studies to report crosstalk between histone methylation and DNA methylation in N. crassa and A. thaliana .

    CAS  PubMed  Google Scholar 

  34. Osipovich, O. et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nature Immunol. 5, 309–316 (2004).

    CAS  Google Scholar 

  35. Carlson, L. L., Page, A. W. & Bestor, T. H. Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes Dev. 6, 2536–2541 (1992).

    CAS  PubMed  Google Scholar 

  36. Leonhardt, H., Page, A. W., Weier, H. U. & Bestor, T. H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865–873 (1992).

    CAS  PubMed  Google Scholar 

  37. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007). References 37–39 show that UHRF1 contains an SRA domain that binds to hemimethylated CG sites and forms a complex with DNMT1, thus mediating epigenetic inheritance of DNA methylation.

    CAS  PubMed  Google Scholar 

  38. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    CAS  PubMed  Google Scholar 

  39. Achour, M. et al. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene 27, 2187–2197 (2008).

    CAS  PubMed  Google Scholar 

  40. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476 (2008).

    CAS  PubMed  Google Scholar 

  41. Weber, M. & Schubeler, D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19, 273–280 (2007).

    CAS  PubMed  Google Scholar 

  42. Eden, S., Hashimshony, T., Keshet, I., Thorne, A. W. & Cedar, H. DNA methylation models histone acetylation. Nature 394, 842–843 (1998).

    CAS  PubMed  Google Scholar 

  43. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. & Cedar, H. The role of DNA methylation in setting up chromatin structure during development. Nature Genet. 34, 187–192 (2003).

    CAS  PubMed  Google Scholar 

  44. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    CAS  PubMed  Google Scholar 

  45. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).

    CAS  PubMed  Google Scholar 

  46. Esteve, P. O. et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 20, 3089–3103 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lande-Diner, L. et al. Role of DNA methylation in stable gene repression. J. Biol. Chem. 282, 12194–12200 (2007).

    CAS  PubMed  Google Scholar 

  48. Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tachibana, M., Matsumura, Y., Fukuda, M., Kimura, H. & Shinkai, Y. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J. 27, 2681–2690 (2008). References 49 and 50 show that G9a promotes DNA methylation of retrotransposons and a number of genes in embryonic stem cells independently of its catalytic activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong, K. B. et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 27, 2691–2701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    CAS  PubMed  Google Scholar 

  52. Li, H. et al. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J. Biol. Chem. 281, 19489–19500 (2006).

    CAS  PubMed  Google Scholar 

  53. Smallwood, A., Esteve, P. O., Pradhan, S. & Carey, M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21, 1169–1178 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Freitag, M., Hickey, P. C., Khlafallah, T. K., Read, N. D. & Selker, E. U. HP1 is essential for DNA methylation in Neurospora. Mol. Cell 13, 427–434 (2004).

    CAS  PubMed  Google Scholar 

  55. Lande-Diner, L. & Cedar, H. Silence of the genes — mechanisms of long-term repression. Nature Rev. Genet. 6, 648–654 (2005).

    CAS  PubMed  Google Scholar 

  56. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    CAS  PubMed  Google Scholar 

  57. Franke, A. et al. Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. EMBO J. 11, 2941–2950 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    CAS  PubMed  Google Scholar 

  59. Lee, T. I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008). The authors suggest a mechanism by which H3K27me3 is propagated during the cell division cycle. Once H3K27me3 is established it recruits the PRC2 complex, leading to methylation of histone H3 on the newly synthesized DNA.

    CAS  PubMed  Google Scholar 

  61. Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452, 877–881 (2008). This study examines the erasure of parental imprints in mouse primordial germ cells during embryogenesis. The data suggest that DNA demethylation occurs prior to histone replacement, thus supporting a repair model for demethylation.

    CAS  PubMed  Google Scholar 

  62. Schwartz, Y. B. & Pirrotta, V. Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol. 20, 266–273 (2008).

    CAS  PubMed  Google Scholar 

  63. Pietersen, A. M. & van Lohuizen, M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol. 20, 201–207 (2008).

    CAS  PubMed  Google Scholar 

  64. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  65. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

    CAS  PubMed  Google Scholar 

  67. Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    CAS  PubMed  Google Scholar 

  68. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  69. Hershko, A. Y., Kafri, T., Fainsod, A. & Razin, A. Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene 302, 65–72 (2003).

    CAS  PubMed  Google Scholar 

  70. Payer, B. & Lee, J. T. X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42, 733–772 (2008).

    CAS  PubMed  Google Scholar 

  71. Lock, L. F., Takagi, N. & Martin, G. R. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 48, 39–46 (1987).

    CAS  PubMed  Google Scholar 

  72. Samollow, P. B., Robinson, E. S., Ford, A. L. & Vandeberg, J. L. Developmental progression of Gpd expression from the inactive X chromosome of the virginia opossum. Dev. Genet. 16, 367–378 (1995).

    CAS  PubMed  Google Scholar 

  73. Migeon, B. R., Jan de Beur, S. & Axelman, J. Frequent derepression of G6PD and HPRT on the marsupial inactive X chromosome associated with cell proliferation in vitro. Exp. Cell Res. 182, 597–609 (1989).

    CAS  PubMed  Google Scholar 

  74. Gautsch, J. W. & Wilson, M. C. Delayed de novo methylation in teratocarcinoma suggests additional tissue-specific mechanisms for controlling gene expression. Nature 301, 32–37 (1983).

    CAS  PubMed  Google Scholar 

  75. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). This is the first report showing the generation of iPS cells by introduction of four transcription factor genes into somatic cells.

    CAS  PubMed  Google Scholar 

  76. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    CAS  PubMed  Google Scholar 

  77. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    CAS  PubMed  Google Scholar 

  78. Welstead, G. G., Schorderet, P. & Boyer, L. A. The reprogramming language of pluripotency. Curr. Opin. Genet. Dev. 18, 123–129 (2008).

    CAS  PubMed  Google Scholar 

  79. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008). This paper shows that partially reprogrammed cell lines have DNA hypermethylation at pluripotency-related loci. This suggests that DNA demethylation is an inefficient step accomplished late in the transition to pluripotency.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shi, Y. et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525–528 (2008).

    CAS  PubMed  Google Scholar 

  81. Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574 (2008).

    CAS  PubMed  Google Scholar 

  82. Ma, D. K., Chiang, C. H., Ponnusamy, K., Ming, G. L. & Song, H. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 2131–2141 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. De Marzo, A. M. et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res. 59, 3855–3860 (1999).

    CAS  PubMed  Google Scholar 

  85. Robertson, K. D. et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 27, 2291–2298 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genet. 38, 149–153 (2006).

    CAS  PubMed  Google Scholar 

  87. Schlesinger, Y. et al. Polycomb mediated histone H3(K27) methylation pre-marks genes for de novo methylation in cancer. Nature Genet. 39, 232–236 (2007). References 87–89 show that in cancer cells a large number of CpG islands marked by H3K27me3 undergo de novo methylation, indicating that Polycomb-directed de novo methylation might play an important part in carcinogenesis.

    CAS  PubMed  Google Scholar 

  88. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39, 237–242 (2007).

    CAS  PubMed  Google Scholar 

  89. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet. 39, 157–158 (2007).

    CAS  PubMed  Google Scholar 

  90. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    CAS  PubMed  Google Scholar 

  91. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Benetti, R. et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Struct. Mol. Biol. 15, 268–279 (2008).

    CAS  Google Scholar 

  93. Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature Struct. Mol. Biol. 15, 259–267 (2008).

    CAS  Google Scholar 

  94. Gal-Yam, E. N. et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl. Acad. Sci. USA 105, 12979–12984 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. McGarvey, K. M., Greene, E., Fahrner, J. A., Jenuwein, T. & Baylin, S. B. DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res. 67, 5097–5102 (2007).

    CAS  PubMed  Google Scholar 

  96. Lindroth, A. M. et al. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet. 4, e1000145 (2008).

    PubMed  PubMed Central  Google Scholar 

  97. Zhao, Q. et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nature Struct. Mol. Biol. 16, 304–311 (2009).

    CAS  Google Scholar 

  98. Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genet. 41, 125–129 (2009).

    CAS  PubMed  Google Scholar 

  99. Goldmit, M. et al. Epigenetic ontogeny of the κ locus during B cell development. Nature Immunol. 6, 198–203 (2005).

    CAS  Google Scholar 

  100. Loh, Y. H., Zhang, W., Chen, X., George, J. & Ng, H. H. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 21, 2545–2557 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lan, F., Nottke, A. C. & Shi, Y. Mechanisms involved in the regulation of histone lysine demethylases. Curr. Opin. Cell Biol. 20, 316–325 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Agger, K., Christensen, J., Cloos, P. A. & Helin, K. The emerging functions of histone demethylases. Curr. Opin. Genet. Dev. 18, 159–168 (2008).

    CAS  PubMed  Google Scholar 

  103. Paroush, Z., Keshet, I., Yisraeli, J. & Cedar, H. Dynamics of demethylation and activation of the α actin gene in myoblasts. Cell 63, 1229–1237 (1990).

    CAS  PubMed  Google Scholar 

  104. Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675 (2007). References 104, 105, 107 and 108 show that active DNA demethylation might be accomplished through DNA repair promoted by GADD45.

    CAS  PubMed  Google Scholar 

  105. Rai, K. et al. DNA Demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell 135, 1201–1212 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Weiss, A., Keshet, I., Razin, A. & Cedar, H. DNA demethylation in vitro: involvement of RNA. Cell 86, 709–718 (1996).

    CAS  PubMed  Google Scholar 

  107. Schmmitz, K. M. et al. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell 33, 344–353 (2009).

    Google Scholar 

  108. Ma, D. K. et al. Neuronal sctivity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Israel Academy of Science (Y.B. and H.C.), the National Institutes of Health (Y.B. and H.C.), the Israel Cancer Research Fund (Y.B. and H.C.) and Lew Sherman (H.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Cedar.

Related links

Related links

FURTHER INFORMATION

The Cedar laboratory

Glossary

Histone

Protein component of chromatin that is involved in regulation of gene expression. Two of each of the core histones, H2A, H2B, H3 or H4, make up an octameric nucleosome, around which DNA winds. N-terminal tails of histones can be subject to covalent modification, including methylation and acetylation.

CpG island

A sequence of at least 200 bp with a greater number of CpG sites than expected given the average GC content of the genome. These regions are typically undermethylated and are found upstream of many mammalian genes.

Chromodomain

Initially identified in the Drosophila melanogaster heterochromatin protein 1 and Polycomb proteins, this is an 50 amino acid, highly conserved domain that binds to histone tails that are methylated at certain lysine residues. Different classes of chromodomains have been implicated in binding histones, RNA and DNA.

Heterochromatin protein 1

(HP1). Conserved component of silent heterochromatic regions, which contains a chromodomain that binds nucleosomes containing histone H3 that is methylated on lysine 9.

Heterochromatin

Highly compacted regions of chromatin, in which transcription is repressed. Constitutive heterochromatin is a common feature of highly repetitive DNA sequences.

Satellite repeat

DNA that contains many tandem repeats of a short basic repeating unit. Both the major and minor satellite repeats are located at pericentromeric heterochromatin.

SET domain

An evolutionarily conserved sequence motif that was initially identified in the Drosophila melanogaster position effect variegation suppressor Su(var)3–9, the Polycomb-group protein Enhancer of zeste, and Trithorax (a Trithorax group protein). It is present in many histone methyltransferases and is required for enzyme activity.

Dicer

An RNA endonuclease that cleaves double-stranded RNA into small interfering RNAs of approximately 21 bp.

RNA-induced silencing complex

(RISC). A complex made up of an Argonaute protein and small RNA, which inhibits translation of target RNAs through degradative or non-degradative mechanisms.

Imprinted locus

A locus at which the expression of an allele is different depending on whether it is inherited from the mother or the father.

X chromosome inactivation

The process that occurs in female mammals by which gene expression from one of the two X chromosomes is downregulated to match the levels of gene expression from the single X chromosome that is present in males. Inactivation involves changes in DNA methylation and histone modifications.

Chromatin immunoprecipitation

(ChIP). A technique that is used to analyse the genomic location of DNA-associated proteins that involves crosslinking DNA–protein complexes then immunoprecipitation using an antibody against a protein of interest. This is followed by analysis of the recovered DNA sequences.

Polycomb repressive complex

(PRC). A group of repressive chromatin proteins that maintain states of gene expression throughout development. Originally identified in Drosophila melanogaster as genes in which mutations caused homeotic transformations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cedar, H., Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10, 295–304 (2009). https://doi.org/10.1038/nrg2540

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing