Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic biology: understanding biological design from synthetic circuits

Key Points

  • An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits.

  • Inducible gene circuits have been used to directly observe the burst-like nature of mRNA and protein synthesis.

  • Combinatorial promoter libraries highlight the constraints on the positioning of transcription factor binding sites in a promoter.

  • A layered transcriptional–post-transcriptional synthetic regulatory circuit was used to suggest that the decision to undergo apoptosis depends on reaching a threshold level of Bax.

  • Chimeric pathway sensors allow the activation of a pathway by novel stimuli, so precise, specific inputs can be used to measure pathway transfer functions.

  • Rationally rewired bacterial two-component systems confirm the existence of specificity residues in the constituent proteins that prevent pathway crosstalk.

  • Robust, tunable oscillations can be achieved by interlocking negative and positive feedback loops.

  • Randomly generated gene networks show that the Escherichia coli transcriptional network is robust to rewiring and that networks of differing topology can yield the same Boolean truth table.

  • Synthetic circuits built to specifically respond to rapidly increasing activators can be used to form patterns.

  • Synthetic circuits controlling cell–cell interactions were used to characterize predator–prey dynamics and Simpson's paradox, paving the way for future research in the field of synthetic ecology.

Abstract

An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Controlling the flow of information from DNA to proteins using synthetic elements.
Figure 2: An integrated transcription and translation circuit for controlling gene expression in mammalian systems.
Figure 3: Using synthetic circuits to engineer cell–cell interactions.

Similar content being viewed by others

References

  1. Mattick, J. S. RNA regulation: a new genetics? Nature Rev. Genet. 5, 316–323 (2004).

    CAS  PubMed  Google Scholar 

  2. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic Press, 2006).

    Google Scholar 

  3. Prud'homme, B. P., Gompel, N. & Carroll, S. B. Emerging principles of regulatory evolution. Proc. Natl Acad. Sci. USA 104 (Suppl. 1), 8605–8612 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone–receptor complexity by molecular exploitation. Science 312, 97–101 (2006). This study used the rational synthesis of a resurrected glucocorticoid receptor to explore the evolution of the receptor–ligand pair.

    CAS  PubMed  Google Scholar 

  5. Rapp, M., Seppala, S., Granseth, E. & von Heijne, G. Emulating membrane protein evolution by rational design. Science 315, 1282–1284 (2007).

    CAS  PubMed  Google Scholar 

  6. Gilbert, E. S., Walker, A. W. & Keasling, J. D. A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Appl. Microbiol. Biotechnol. 61, 77–81 (2003).

    CAS  PubMed  Google Scholar 

  7. Rajendran, M. & Ellington, A. D. Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal. Bioanal. Chem. 390, 1067–1075 (2008).

    CAS  PubMed  Google Scholar 

  8. Steen, E. J. et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7, 36 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Waks, Z. & Silver, P. A. Engineering a synthetic dual organism system for hydrogen production. Appl. Environ. Microbiol. 75, 1867–1875 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Khosla, C. & Keasling, J. D. Metabolic engineering for drug discovery and development. Nature Rev. Drug Discov. 2, 1019–1025 (2003).

    CAS  Google Scholar 

  11. Ro, D. et al. Production of the antimalarial drug precursor artemisinc acid in engineered yeast. Nature 440, 940–943 (2006). Perhaps the most striking example of a pathway that has been successfully engineered to meet a design goal, in this case the production of the antimalarial compound arteminisin.

    CAS  PubMed  Google Scholar 

  12. Anderson, J. C., Clarke, E. J., Arkin, A. P. & Voigt, C. A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    CAS  PubMed  Google Scholar 

  13. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Google Scholar 

  14. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    CAS  PubMed  Google Scholar 

  15. Pedraza J. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1968 (2005). Reference 14 introduced the concept of the gene regulation function (GRF) and showed that the GRF fluctuates from cell to cell, whereas reference 15 used a synthetic transcriptional cascade to measure and model how these fluctuations can be attributed to noise intrinsic to the expression of a gene and GRF fluctuations from upstream components.

    CAS  PubMed  Google Scholar 

  16. Setty, Y., Mayo, A. E., Surette, M. G. & Alon, U. Detailed map of a cis-regluatory input function. Proc. Natl Acad. Sci. USA 100, 7702–7707 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  18. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  19. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    CAS  PubMed  Google Scholar 

  20. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    PubMed  PubMed Central  Google Scholar 

  21. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006). References 19–21 are three single-molecule studies that directly visualized the burst-like nature of transcription and translation, capturing the stochastic nature of these basic processes in great detail.

    CAS  PubMed  Google Scholar 

  22. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hammer, K., Mijakovic, I. & Jensen, P. R. Synthetic promoter libraries — tuning of gene expression. Trends Biotechnol. 24, 53–55 (2006).

    CAS  PubMed  Google Scholar 

  24. Cox, R. S., Surette, M. G. & Elowitz, M. B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    PubMed  PubMed Central  Google Scholar 

  25. Kinkhabwala, A. & Guet, C. C. Uncovering cis regulatory codes using synthetic promoter shuffling. PLoS ONE 3, e2030 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nature Rev. Genet. 10, 443–456 (2009).

    CAS  PubMed  Google Scholar 

  27. Gertz, J., Siggia, E. D. & Cohen, B. A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).

    CAS  PubMed  Google Scholar 

  28. Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial transcription logic. Proc. Natl Acad. Sci. USA 100, 5136–5141 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Becskei, A., Kaufmann, B. B. & van Oudenaarden, A. Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nature Genet. 37, 937–944 (2005).

    CAS  PubMed  Google Scholar 

  30. Pokharel, S. & Beal, P. A. High-throughput screening for function adenosine to inosine RNA editing systems. ACS Chem. Biol. 1, 761–765 (2006).

    CAS  PubMed  Google Scholar 

  31. Beisel, C. L., Bayer, T. S., Hoff, K. G. & Smolke, C. D. Model-guided design of ligand-regulated RNAi for programmable control of gene expression. Mol. Syst. Biol. 4, 224 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Win, M. N. & Smolke, C. D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Werstruck, G. & Green, M. R. Controlling gene expression in living cells through small molecule–RNA interactions. Science 282, 296–298 (1998).

    Google Scholar 

  34. Grate, D. & Wilson, C. Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer–ligand complex. Bioorg. Med. Chem. 9, 2565–2570 (2001).

    CAS  PubMed  Google Scholar 

  35. Suess, B., Fink, B., Berens, C., Stentz, R. & Hillen, W. A. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 32, 1610–1614 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Desai, S. K. & Gallivan, J. P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J. Am. Chem. Soc. 126, 13247–13254 (2004).

    CAS  PubMed  Google Scholar 

  37. Davidson, E. A. & Ellington, A. D. Synthetic RNA circuits. Nature Chem. Biol. 3, 23–28 (2007).

    CAS  Google Scholar 

  38. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnol. 22, 841–847 (2004).

    CAS  Google Scholar 

  39. Grilly, C., Stricker, J., Pang, W. L., Bennett, M. R. & Hasty, J. A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae. Mol. Syst. Biol. 3, 127 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Deans, T. L., Cantor, C. R. & Collins, J. J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130, 363–372 (2007).

    CAS  PubMed  Google Scholar 

  41. Martin, C. H., Nielsen, D. R., Solomon, K. V. & Prather, K. L. Synthetic metabolism: engineering biology at the protein and pathway scales. Chem. Biol. 16, 277–286 (2009).

    CAS  PubMed  Google Scholar 

  42. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnol. 27, 753–759 (2009).

    CAS  Google Scholar 

  43. Janin, J. & Chothia, C. Domains in proteins: definitions, location, and structural principles. Methods Enzymol. 115, 420–430 (1985).

    CAS  PubMed  Google Scholar 

  44. Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    PubMed  Google Scholar 

  45. Kaplan, J. & DeGrado, W. F. De novo design of catalytic proteins. Proc. Natl Acad. Sci. USA 101, 11566–11570 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhattacharyya, R. P., Remenyi, A., Yeh, B. J. & Lim, W. A. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Ann. Rev. Biochem. 75, 655–680 (2006).

    CAS  PubMed  Google Scholar 

  47. Proft, M. & Struhl, K. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118, 351–361 (2004).

    CAS  PubMed  Google Scholar 

  48. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed  PubMed Central  Google Scholar 

  49. Cironi, P., Swinburne, I. A. & Silver, P. A. Enhancement of cell type specificity by quantitative modulation of a chimeric ligand. J. Biol. Chem. 283, 8469–8476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Levskaya, A. et al. Engineering bacteria to see light. Nature 438, 441–442 (2005).

    CAS  PubMed  Google Scholar 

  51. Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable gene promoter system. Nature Biotechnol. 20, 1041–1044 (2002).

    CAS  Google Scholar 

  52. Cruz, F. G., Koh, J. T. & Link, K. H. Light activated gene expression. J. Am. Chem. Soc. 122, 8777–8778 (2000).

    CAS  Google Scholar 

  53. Cambridge, S. B., Geissler, D., Keller, S. & Curten, B. A caged doxycycline analogue for photoactivatable gene expression. Angew. Chem. Int. Ed. 45, 2229–2231 (2006).

    CAS  Google Scholar 

  54. Dugave, C. & Demange, L. Cis–trans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev. 103, 2475–2532 (2003).

    CAS  PubMed  Google Scholar 

  55. Young, D. D. & Deiters, A. Photochemical control of biological processes. Org. Biomol. Chem. 5, 999–1005 (2007).

    CAS  PubMed  Google Scholar 

  56. Taylor, R. J. et al. Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proc. Natl Acad. Sci. USA 106, 3758–3763 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mettetal, J. T., Muzzey, D., Gomez-Uribe, C. & van Oudenaarden, A. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319, 482–484 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hersen, P., McClean, M. N., Mahadevan, L. & Ramanathan, S. Signal processing by the HOG MAP kinase pathway. Proc. Natl Acad. Sci. USA 105, 7165–7170 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ubersax, J. A. & Ferrell, J. E. Mechanisms of specificity in protein phosphorylation. Nature Rev. Mol. Cell Biol. 8, 530–541 (2007).

    CAS  Google Scholar 

  60. Harris, K. et al. Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway-dedicated signaling proteins. Curr. Biol. 11, 1815–1824 (2001).

    CAS  PubMed  Google Scholar 

  61. McClean, M. N., Mody, A., Broach, J. R. & Ramanathan, S. Cross-talk and decision making in MAP kinase pathways. Nature Genet. 39, 409–414 (2007).

    CAS  PubMed  Google Scholar 

  62. Behar, M., Dohlman, H. G. & Elston, T. C. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks. Proc. Natl Acad. Sci. USA 104, 16146–16151 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Skerker, J. M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008). This study highlights the combined use of bioinformatic analysis, structural data and rewired pathways for determining the molecular basis of pathway specificity in bacterial two-component systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tatebayashi, K., Takekawa, M. & Saito, H. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J. 22, 3624–3634 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Remenyi, A., Good, M. C. & Lim, W. A. Docking interactions in protein kinase and phosphatase networks. Curr. Opin. Struct. Biol. 16, 676–685 (2006).

    CAS  PubMed  Google Scholar 

  66. Howard, P. L., Chia, M. C., Del Rizzo, S., Liu, F. F. & Pawson, T. Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins, Proc. Natl Acad. Sci. USA 100, 11267–11272 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yeh, B. J., Rutigliano, R. J., Deb, A., Bar-Sagi, D. & Lim, W. A. Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447, 596–600 (2007).

    CAS  PubMed  Google Scholar 

  68. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002). This paper explores a library of possible network topologies in a way that highlights the impressive flexibility of even simple gene networks, notably showing that networks of identical topology can have different behaviours.

    CAS  PubMed  Google Scholar 

  70. Isalan, M. et al. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–845 (2008). This study demonstrates the ability of E. coli transcriptional networks to tolerate new connections and topologies and, in a limited number of cases, to exploit them to achieve higher fitness.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsong, A. E., Tuch, B. B., Li, H. & Johnson, A. D. Evolution of alternative transcriptional circuits with identical logic. Nature 443, 415–420 (2006).

    CAS  PubMed  Google Scholar 

  72. Wagner, A. Robustness and Evolvability in Living Systems (Princeton Univ. Press, 2007).

    Google Scholar 

  73. Gerhart, J. & Kirschner, M. The theory of facilitated variation. Proc. Natl Acad. Sci. USA 104 (Suppl. 1), 8582–8589 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Antunes, M. S. et al. Engineering key components in a synthetic eukaryotic signal transduction pathway. Mol. Syst. Biol. 5, 270 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet. 8, 450–461 (2007).

    CAS  PubMed  Google Scholar 

  76. Maeda, Y. T. & Sano, M. Regulatory dynamics of synthetic gene networks with positive feedback. J. Mol. Biol. 359, 1107–1124 (2006).

    CAS  PubMed  Google Scholar 

  77. Becskei, A. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ozbudak, E., Thattai, M., Lim, H. N., Shraiman, B. I. & van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004).

    CAS  PubMed  Google Scholar 

  79. Isaacs, F. J., Hasty, J. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).

    CAS  PubMed  Google Scholar 

  81. Rosenfeld, N., Elowitz, M. B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002).

    CAS  PubMed  Google Scholar 

  82. Bashor, C. J., Helman, N. C., Yan, S. & Lim, W. A. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543 (2008). This paper transformed the perception of scaffold proteins as being passive aggregators of pathway components to that of being active players in specifying pathway dynamics, through features such as participation in feedback loops.

    CAS  PubMed  Google Scholar 

  83. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    CAS  PubMed  Google Scholar 

  84. Cantone, I. et al. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137, 172–181 (2009).

    CAS  PubMed  Google Scholar 

  85. Ellis, T., Wang, X. & Collins, J. J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnol. 27, 465–471 (2009).

    CAS  Google Scholar 

  86. Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    CAS  PubMed  Google Scholar 

  87. Geva-Zatorsky, N. et al. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2, 2006.0033 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009). References 88 and 89 achieved, in microbial and mammalian contexts, respectively, the long-sought-after design and implementation of robust, tunable synthetic genetic oscillators.

    CAS  PubMed  Google Scholar 

  90. Acar, M., Becskei, A. & van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic transitions. Nature 435, 228–232 (2005).

    CAS  PubMed  Google Scholar 

  91. Kornmann, B. et al. An ER–mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Basu, S., Mehreja, R., Thiberge, S., Chen, M. T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl Acad. Sci. USA 101, 6355–6360 (2004). An excellent example of a circuit that responds to the dynamics of an input signal rather than the steady state input signal.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    CAS  PubMed  Google Scholar 

  94. Friedland, A. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Isalan, M., Lemerle, C. & Serrano, L. Engineering gene networks to emulate Drosophila embryonic pattern formation. PLoS Biol. 3, e64 (2005).

    PubMed  PubMed Central  Google Scholar 

  96. Tanouchi, Y., Pai, A. & You, L. Decoding biological principles using gene circuits. Mol. Biosyst. 5, 695–703 (2009).

    CAS  PubMed  Google Scholar 

  97. Bulter, T. et al. Design of artificial cell–cell communication using gene and metabolic networks. Proc. Natl Acad. Sci. USA 101, 2299–2304 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, M.-T. & Weiss, R. Artificial cell–cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nature Biotechnol. 23, 1551–1555 (2005).

    CAS  Google Scholar 

  99. You, L., Cox, R. S., Weiss, R. & Arnold, F. H. Programmed population control by cell–cell communication and regulated killing. Nature 428, 868–871 (2004).

    CAS  PubMed  Google Scholar 

  100. Balagadde, F. K. et al. A synthetic Escherichia coli predator–prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).

    PubMed  PubMed Central  Google Scholar 

  101. Brenner, K., Karig, D. K., Weiss, R. & Arnold, F. H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc. Natl Acad. Sci. USA 104, 17300–17304 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chuang, J. S., Rivoire, O. & Leibler, S. Simpson's paradox in a synthetic microbial system. Science 323, 272–275 (2009).

    CAS  PubMed  Google Scholar 

  103. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kwon, O., Georgellis, D. & Lin, E. C. C. Rotational on–off switching of a hybrid membrane sensor kinase Tar–ArcB in Escherichia coli. J. Biol. Chem. 278, 13192–13195 (2003).

    CAS  PubMed  Google Scholar 

  105. Conrad, E. D. & Tyson, J. T. in System Modeling in Cellular Biology (eds Szallasi, Z., Stelling, J. & Periwal, V.) 116–118 (MIT Press, 2006). This paper is contained within a useful reference on mathematical techniques that are used to model biological circuits.

    Google Scholar 

  106. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Google Scholar 

  107. Swinburne, I. A., Miguez, D. G., Landgraf, D. & Silver, P. A. Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev. 22, 2342–2346 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: hysterisis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003).

    CAS  PubMed  Google Scholar 

  109. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122, 565–578 (2005).

    CAS  PubMed  Google Scholar 

  110. Tsai, T. Y. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003).

    CAS  PubMed  Google Scholar 

  112. Hasty, J., Dolnik, M., Rottschafer, V. & Collins, J. J. Synthetic gene network for entraining and amplifying cellular oscillations. Phys. Rev. Lett. 88, 148101 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work was not discussed. This work was supported by grants from the US National Institutes of Health and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander van Oudenaarden.

Related links

Related links

FURTHER INFORMATION

Shankar Mukherji's homepage

Alexander van Oudenaarden's homepage

Nature Reviews Genetics series on Modelling

Glossary

Modularity

A property of a system such that it can be broken down into discrete subparts that perform specific tasks independently of the other subparts.

Bioremediation

The treatment of pollution with microorganisms.

Motif

A subcircuit that is embedded in a larger network and that is found to be statistically overrepresented in that larger network when compared with a random network with similar graphical properties.

Transfer function

A mathematical or graphical representation of the relationship between the input and output of a system.

Higher-order moment

For a probability distribution, a number that characterizes the shape of the distribution, as opposed to the mean.

Variance

The second-order moment of a probability distribution; it characterizes the width of the distribution.

Boolean function

A special class of transfer function that takes binary values as inputs, performs a logical operation and yields binary values as outputs.

Combinatorial promoter library

A collection of promoters that is constructed by randomly ligating together promoter subregions, such as the sequence between −35 and −10 from the start codon, taken from different promoters. Such random ligation of subregions allows for the combinatorial generation of novel promoters from a small number of parts.

Aptamer

A short nucleic acid or peptide sequence that specifically binds to a target molecule.

Riboswitch

A segment of an mRNA molecule that specifically binds a target molecule; riboswitches are closely related to aptamers.

Basal expression

The level of transcription that occurs in the absence of an inducer.

Directed evolution

A cyclic sequence of steps, including modification, selection and amplification. It is used, typically in vitro, to enrich for proteins or nucleic acids that show properties that are desired by the researcher but that are not necessarily found in nature.

Metabolic flux

The rate of turnover of metabolites in a metabolic pathway.

Allosteric site

A region of an enzyme that is physically distinct from the active site and that can induce conformational changes, usually by binding small molecules, to affect the accessibility or efficiency of the active site.

Osmotic shock

A sudden change of the osmotic pressure gradient generated by the balance of the concentration of dissolved molecules inside and outside the cell.

Two-component system

The dominant architecture of environmental signal transduction systems in bacteria. It consists of a sensor kinase that transforms the environmental signal to a phosphate signal, and a cognate response regulator that further transmits the signal to the ultimate effector molecules.

Microfluidic device

A device in which fluids are conveyed to samples in channels with diameters in the order of 1 μm; these chambers can be used to precisely and dynamically control the microenvironment to which cells are exposed.

Bode plot

A special class of transfer function that relates the frequency of the input, such as a stimulus that triggers a signalling cascade, to the output of the system, such as the amplitude of the response.

Scaffold protein

An element of a signal transduction pathway that simultaneously binds multiple members of the pathway. Scaffold proteins increase the local concentrations of pathway proteins and therefore increase the probability of them interacting.

Mutual inhibition

A network architecture that consists of two interacting pathways in which the output of each pathway inhibits the activity of the other pathway.

Kinetic insulation

A mechanism in which a signal is transduced through a particular pathway based on the temporal profile of the signal; for example, a transient signal can be interpreted by the cell as using one particular pathway, whereas a slowly varying signal can be interpreted as using a different pathway.

Boolean truth table

The table of inputs and outputs that specifies a certain Boolean function.

Bistable

A property of a dynamical system in which two discrete states of the system are stable; in a biological setting, bistability implies that a system will persist in a given state even if the stimulus that drove it to that state is removed.

Bayesian inference

A method in which observations are used to calculate the probability that a particular hypothesis about the data is true, such as whether two genes in a network interact.

Relaxation oscillator

An oscillator made up of two states and characterized by cycles of relatively long persistence in a state followed by rapid transitions to the other state.

Limit cycle oscillation

A periodic solution to a set of differential equations that is characterized by either attracting or repelling nearby solutions.

Lotka–Volterra model

A first-order nonlinear set of ordinary differential equations that are used to model the interactions between predators and prey. The model is most well known for admitting periodic solutions in which predator numbers rise and fall with prey numbers after a specified lag time.

Turing test

In computer science, a hypothetical test that is meant to decide whether a machine is displaying intelligent behaviour.

Syncytium

A collection of cytoplasm that contains several nuclei.

Reaction–diffusion

A class of mathematical models in which the concentrations of the molecules being modelled are tracked in space as well as time, taking into account the chemical transformations that the molecules can undergo and their diffusive motion.

Turing instability

A mathematical condition in reaction–diffusion systems in which differences in the diffusion of activating and inhibiting morphogenic molecules result in pattern formation; particular patterns form when inhibitors diffuse faster than autoactivators.

Quorum-sensing pathway

A signalling pathway used by microbes to determine the abundance of related and unrelated microbes in the local environment through the exchange of specific small molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherji, S., van Oudenaarden, A. Synthetic biology: understanding biological design from synthetic circuits. Nat Rev Genet 10, 859–871 (2009). https://doi.org/10.1038/nrg2697

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2697

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing